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ABSTRACT

The objective of this study is to develop micromechanical models for predicting the

stiffness and strength properties of textile composite materials. Micromechanical analysis

of textile composites is possible due to the presence of a repeating unit-cell or representative

volume element. The unit-cell is assumed to span the material continuously in all three

dimensions. On the microscale---comparable to the scale of the unit-cell--the composite is

heterogeneous due to the presence of the reinforcing yarn and the matrix. However, on the

macroscale---comparable to the structural scale--the composite is assumed to be

homogeneous and orthotropic. The homogeneous composite properties are then predicted

from the constituent material properties and the yarn geometry.

The highlight of this study is a systematic analysis of issues involved in the finite

element based micromechanics of textile composites. The unit-cell is discretized with

three-dimensional finite elements, and periodic boundary conditions are imposed between

opposite end-faces of the unit-cell. Six linearly independent deformations are applied to the

unit-cell. From the forces acting on the unit-cell for each of the six deformations, the

composite stiffness matrix is obtained. A similar procedure is followed to determine the

composite coefficients of thermal expansion. The numerical procedure was tested by

applying it for simple examples, for which the results are known. The numerical results were

also compared with existing models for textile composites. In both cases, the results compare

very favorably. The finite element procedure is extended to compute the thermal residual

microstresses and to estimate the initial failure envelope for the textile composite.

An independent finite element micromechanical analysis, analogous to the above, is

presented for thin textile composite structures with few unit-cells in the thickness direction.

In that case, the composite is modeled as a homogeneous plate to predict the plate stiffness

coefficients and plate coefficients of thermal expansion. It was shown the plate properties

could not be predicted from the corresponding three-dimensional properties.

In addition, an approximate analytical procedure is presented to estimate the

composite thermo-elastic constants. The procedure called the Selective Averaging Method

is based on a judicious combination of stiffness and compliance averaging. The method is

fast and easy to implement, and suitable for parametric studies.

iii



CHAPTER 1
INTRODUCTION

1.1 Background

The increasing demand for lightweight yet strong and stiff structures has lead to the

development of advanced fiber reinforced composites. These materials are not only used in

the aerospace industry but also in a variety of commercial applications like automobile,

marine and biomedical applications. Traditionally fibrous composites are manufactured by

laminating several layers of unidirectional fiber tapes (Fig. 1) pre-impregnated with matrix

material. The effective properties of the composite can be controlled by changing several

parameters like the fiber orientation in a layer, stacking sequence, fiber and matrix material

properties and fiber volume fraction. However, the manufacture of fibrous laminated

composites from prepregs is labor intensive. Besides, laminated composites lack

through-the-thickness reinforcement, and hence have poor interlaminar strength and

fracture toughness.

Figure 1. Stacking of layers (plies) for fibrous laminated composite.
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Figure 2. Examples of woven, braided and knitted textile preforms. (Source:

Chou and Ko, 1989)

Recent developments in textile manufacturing processes show some promise in

overcoming the above limitations. Textile processes such as weaving, braiding and knitting

can turn large volumes of yam into dry preforms at a faster rate, thus reducing costs and cycle

time. The dry preforms (Fig. 2) are impregnated with appropriate matrix material and cured

in a mold using processes such as Resin Transfer Molding (RTM). Two-dimensional woven

and braided mats offer increased through the thickness properties due to yam interlacing.

The mats may be stitched using Kevlar or glass threads to provide additional reinforcement

along the thickness direction (Sharma and Sankar, 1995). Three-dimensional woven and

braided composites provide multidirectional reinforcement, thus directly enhancing the

strength and stiffness in the thickness direction. Unlike laminated structures



three-dimensionalcompositesdonotpossesstheweakplaneof delamination,thusgiving

increasedimpact resistanceandfracturetoughness.Textilemanufacturingprocessesin

conjunctionwith resintransfermoldingarealsosuitablefor the productionof intricate

structuralforms at a reducedcycle time. This allowscomplexshapedstructuresto be

fabricatedasanintegralunit, thuseliminatingtheuseofjoints andfasteners.

With theadvancementsin aforementionedtechnologiesthereis aneedto develop

scientificmethodsof predictingtheperformanceof thecompositesmadeusingtheabove

processes.Therearenumerousvariablesinvolvedin textileprocessesbesidesthechoiceof

thefiberandmatrixmaterials.This,forexample,includes(a)thenumberof filamentsin the

yamspecifiedbytheyamlineardensityand(b)theyarnarchitecture(descriptionof theyam

geometry)determinedby thetypeof weavingorbraidingprocesses.Thus,thereis aneed

foranalytical/numericalmodelstostudytheeffectof thesevariablesonthetextilecomposite

a structural engineerwould like to model textile compositesas a

anisotropic material--preferably orthotropicmso that the structural

computationscanbesimplified,andalsotheexistingcomputercodescanbeusedin the

design.Thiswouldrequirethepredictionof theeffective(macroscopic)propertiesof the

compositesfrom theconstituentmaterial(microscopic)characteristicssuchasyam and

matrixproperties,yam-matrixinterfacecharacteristicsandtheyam architecture(Fig.3).

This is possibleif we assumethatthereis arepresentativevolumeelement(RVE)or an

unit-cellthatrepeatsitsselfthroughoutthevolumeofthecomposite,whichistruein thecase

oftextilecomposites.Theunit-cellcanbeconsideredasthesmallestpossiblebuildingblock

for thetextilecomposite,suchthatthecompositecanbecreatedbyassemblingtheunit-cell

in all threedimensions(Fig.4).Thepredictionoftheeffectivemacroscopicpropertiesfrom

the constituentmaterialcharacteristicsis one of the aspectsof the scienceknown as

micromechanics. The effective properties include thermo-mechanical properties like

behavior.

Ideally

homogeneous
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stiffness, strength and coefficients of thermal expansion as well as thermal conductivities,

electromagnetic and other transport properties.

(a)

(b)

/
/

Figure 3. Essence of micromechanics.

(a) composite (microscale) showing plain-weave pattern

(b) homogeneous and orthotropic composite (macroscale).

f

/

_f _f_f_f_f_f F

_f _f_f_f_f_f F

Figure 4. Unit-cell for a textile composite.



Most of theearlywork to determinethepropertiesof heterogeneousmaterialswas

restrictedto particulate(spherical)inclusionswhich were assumedto be isotropic.For

example,Hashin (1962)derivedexpressionsfor the boundsfor the elastic moduli of

heterogeneousmaterialsusing variationaltheory.A review of analyticalmethodsfor

predictingtheeffectivepropertiesof particulatecompositeswaspresentedby Christensen

(1990). However, the complexgeometryof the textile preformsmakessuchprecise

analyticalmodelingdifficult.

Thecurrentliteraturedealingwithmicromechanicalanalysesfor textilecomposites

canbebroadlyclassifiedinto threecategories:mechanicsof materialstypemodels,energy

basedapproach,and finite elementanalysisof the unit-cell. All of the abovemodels

recognizethatthereis aunit-cellin thecompositematerial,andtheyattemptto modelthe

materialasahomogeneousorthotropicmaterial.In themechanicsofmaterialstypemodels,

theyamsareapproximatedassimplestructuralelements,e.g., beams, plates, laminates etc.,

and their deformation behavior is assumed to be governed by the corresponding structural

constitutive relations. The kinematics is also simplified to a great extent, and a relation

between the overall deformation of the unit-cell and the average forces are derived. The

energy approach is similar to the previous one, except that the strain energy in the unit-cell

is evaluated based on some assumed displacement field, which is usually an

oversimplification of exact displacements. The elastic constants are derived by equating the

strain energy in the approximate model to that in an idealized homogeneous composite.

Most energy based approaches provide bounds for the homogeneous properties, and can be

used as a check for experimental observations or other theoretical models. The third method

is the rigorous micromechanical analysis of the unit-cell, which often requires the use of

numerical methods such as the finite element method, and also uses the exact

three-dimensional constitutive relations for the yam and the matrix material.

Ishikawa and Chou (1982a, 1982b, 1983a, 1983b, 1983c) proposed three analytical

models for thermo-elastic properties of woven fabric compositesnthe mosaic model, the



fiber undulation model and bridging model. The mosaic model treats the composite as an

assembly of crossply laminates, and then uses lamination theory to predict the composite

properties. The fiber undulation model in addition takes into account the effect of yarn

continuity in the loading direction. The bridging model was specifically developed to

estimate the elastic behavior of satin weaves. This model simulates the effect of load

distribution and load transfer between the yams. The above three models were developed

for two-dimensional fabric composites. These models were then extended by Yang et al.

(1986) in the fiber inclination model to predict the elastic properties of three-dimensional

textile composites. The fiber inclination model was used to determine the elastic properties

of three-dimensional angle-interlock composites and braided composites by Whitney and

Chou (1989) and Ma et al. (1986) respectively. The results were compared with test data,

and parametric analyses were performed to study the effect of changing geometric

parameters. Crane and Camponeschi (1986) presented an analytical model based on classical

lamination theory to predict the extensional stiffnesses for multi-directional braided

composites. Naik (1994) used a stiffness averaging technique to predict woven and braided

composite properties (explained in Chapter 3).

Numerical modeling of the unit-cell is popular due to its ability to capture the effects

of complicated yam architectures. For instance, Yoshino and Ohtsuka (1982) performed a

two-dimensional finite element analysis using plane strain elements to predict the stress

distribution within a plain-weave fabric. Dasgupta et al. (1990) and Whitcomb (1991)

analyzed the unit-cell of a plain-weave composite using three-dimensional finite elements

to determine the effect of the yarn geometry and yarn volume fraction on the composite

thermo-elastic constants. Foye (1993) used inhomogeneous elements called replacement

elements to model the unit-cell. His model can be used to predict both composite stiffness

and strength properties. Cox et al. (1994) presented a three-dimensional finite element model

using two types of elements. The yams are modeled as two-node line elements and the rest

of the medium as eight-node solid elements. The model was used to predict failure



mechanismsin angleand orthogonalinterlock woven composites.Raju et al. (1990)

compileda reviewof availableanalyticaland numericalmethodsfor modelingtextile

composites.

1.2 Scope of Study

The analytical models explained above are approximate--they make use of

assumptions similar to that in classical plate theory, and the yarn geometry is greatly

simplified. Further, these models do not consider periodic boundary conditions (see Section

2.1.1) for continuity of displacements and tractions on opposite faces of the unit-ceil. Most

of the existing numerical models are for specific yam geometries such as simple weave

architectures. Therefore there is a need for more general models to predict the mechanical

properties for a textile composite, particularly for composites with complex woven and

braided geometries. The present study illustrates two such methods. The first method

involves rigorous finite element analysis of the unit-cell, which imposes exact displacement

and traction boundary conditions on the end-faces of the unit-cell. The second is an

approximate analysis in which the unit-cell is discretized into a number of elements. The

effective (macroscale) stiffness for the composite is computed by a combination of stiffness

and compliance averaging of the element stiffness coefficients. The advantage of the

proposed methods is their generality--they are applicable to any textile geometry provided

that there exists a repeatable pattern (which defines the unit-cell). Both the methods can

compute the effective elastic constants and effective coefficients of thermal expansion for

the homogenous composite.

The analysis for the elastic constants of the textile composite continuum assumes that

the unit-cell is repeatable in all three dimensions. This assumption will not be valid for thin

textile composite structures, where there will be a only a few unit-cells in the thickness

direction. For such applications, an alternate micromechanical analysis is proposed. The



unit-cellismodeledasaplate(Fig.5)andthecorrespondingplatestiffnesscoefficientsand

platecoefficientsof thermalexpansionarepredicted.

Figure5. Textilecompositeplateshowingunit-cell.

Chapter2 explains the finite elementprocedureto computethe macroscale

thermo-elasticconstants.Theprocedureis detailedfor athick textilecompositein which

therearesufficientnumberof unit-cellsin thethicknessdirection.Theprocedureis then

extendedto a thin composite.The thin compositeis first modeledas a beamand a

two-dimensionalanalysisispresentedto computethebeamthermo-elasticcoefficients.A

similarthree-dimensionalanalysisis alsoillustratedinwhichthethincomposit_ismodeled

as a plate.An analyticalprocedurecalled the SelectiveAveragingMethod (SAM) is

presentedin Chapter3to estimatethemacroscalethermo-elasticconstants.Thisprocedure

utilizes ajudicious combinationof stiffnessandcomplianceaveragingto computethe

compositeproperties.Againfor athin textilecompositetheplatestiffnesscoefficientsand

platecoefficientsof thermalexpansionmaybecomputed.



In Chapter 4 the microstresses computed using the finite element analysis, are used

to construct an initial failure envelope for a textile composite modeled as homogeneous

continuum. An independent procedure using plate theory is presented to predict the failure

envelope for a thin textile composite. Since the composite is generally fabricated at a

temperature greater than room temperature, thermal residual microstresses are developed

due to the mismatch in the coefficients of thermal expansion for the constituent materials.

A method to predict these thermal microstresses is illustrated. Chapter 5 deals with the issues

pertaining to finite element modeling of the unit-cell. Due to the complex yam architectures,

traditional finite element modeling becomes exceedingly difficult. Various alternative

means of finite element modeling the unit-cell are discussed with suitable two-dimensional

examples. Finally Chapter 6 summarizes the work done in this study. The limitations of the

work are addressed and suggestions are given for future work in this area.



CHAPTER 2

FINITE ELEMENT MODELS FOR THERMO-ELASTIC CONSTANTS

In this chapter, we demonstrate finite element based micromechanical models to

predict the effective stiffness properties and effective coefficients of thermal expansion

(CTE's) for a textile composite. The macroscale properties of the composite are determined

at a scale much larger than the dimensions of the unit-cell, but comparable to the dimensions

of the structural component. The average stresses at a point at the structural scale will be

called the macroscale stresses or macrostresses. The actual stresses at a point at the

continuum level will be called the microscale stresses or microstresses. To distinguish the

macroscale deformations and stresses from their microscale counterparts--a superscript

"M" will be used to denote the macroscale deformations and stresses.

2.1 Unit-Cell Analysis for Three-Dimensional Elastic Constants

In this section a procedure to determine the three-dimensional elastic constants for

a textile composite material is described. Consider a rectangular hexahedron as the unit-cell

of the three-dimensional textile composite. The edges of the unit-cell are assumed to be

parallel to the coordinate axes Xl, x2 and x3, with unit-cells repeating in all three directions.

The length of the unit-cell in thexi direction is defined as L/. On the macroscale the composite

is assumed to be homogeneous and orthotropic and the composite behavior is characterized

by the following constitutive relation :

10
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where {a M} and {E M} are the macrostresses and macrostrains, respectively; {a c} and [C]

are the macroscale CTE's and orthotropic elasticity matrix to be determined; A T M is a

uniform temperature difference throughout the unit-cell. The macroscale elasticity matrix

is of the form:

[c]

"Cll C12 C13 C14 C15 C16"

C22 C23 C24 C25 C26

C33 C34 C35 C36

symm. C44 C45 C46

C55 C56

C66

(2)

The unit-cell analysis assumes that the material is homogeneous and orthotropic on the

macroscale. The material, therefore, is subject to a uniform state of strain in the macroscopic

sense. The macrostresses required to create such a state of strain are computed from the finite

element model of the unit-cell. In the microscale, all unit-cells have identical stress and strain

fields. Continuity of microstresses across the unit-cell then requires that tractions be equal

and opposite at corresponding points on opposite faces of the unit-cell. Since the

displacement gradients are constant for a homogeneous deformation, the displacements at

corresponding points on opposite faces of the unit-cell differ only by a constant.
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2.1.1 Periodic Boundary Conditions

The periodic boundary conditions (BC's) consist of the periodic displacement

boundary conditions which ensure the compatibility of displacements on opposite faces of

the unit-cell, and the periodic traction boundary conditions to enforce the continuity of

stresses. A macroscopically homogeneous deformation can be represented as

= H,jxj

where H(/ are the displacement gradients.

conditions to be imposed on the faces xi=O and xi=Li are

ui(L1,x2,x3) - ui(O, x2,x3) = HilL 1

ui(Xl,L2,x3) - ui(Xl,O, x3) = ni2z 2

ui(xl,X2,L3) - ui(xl,x2,0 ) = ni3z 3

The traction boundary conditions to be imposed on the faces xi=O and xi=Li are

Fi(L 1,x2, x3) = - Fi(O , x 2, x 3)

Fi(x 1,L2, x3) = - Fi(x 1O, x3)

Fi(Xl,X2,L3) = - Fi(Xl,X2, O)

i,j = 1,2,3 (3)

Then the periodic displacement boundary

(4)

(5)

The periodic displacement and traction BC's (for a two-dimensional problem) to be imposed

for the deformation given by ell =1/L1 and e22 =Y12 =0 are shown in Fig. 6.

The above periodic BC's are imposed in the finite element model either by using

multi-point constraint elements or by incorporating transformation equations to eliminate

the constrained displacements (Cook et al., 1989). These two methods to impose the periodic

BC's are discussed in Section 5.1.3. Both the methods require a finite element model with

corresponding nodes on opposite faces of the unit-cell.
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Figure 6. Two-dimensional example illustrating the periodic boundary

conditions for the the deformation ell =1/1-,1 and e22 =Y12 =0.

2.1.2 Determination of Three-Dimensional Elastic Constants and CTE's

The unit-cell is discretized with three-dimensional finite elements such that opposite

faces of the unit-cell have identical nodes. Periodic displacement and traction boundary

conditions are enforced between the corresponding nodes. The periodic displacement BC's

are imposed such that only one of the macrostrain components is non-zero; and the uniform

temperature difference A T M is set to zero. Then, the difference in displacements between

corresponding points on opposite faces of the unit-cell will be equal to that in a homogenous

continuum subject to the same deformation. The average stresses (macrostresses) required

to create such a deformation are obtained from the finite element results. Substituting the

macrostresses and macrostrains in the composite constitutive relation (Eqn. 1) the stiffness

coefficients in the column corresponding to the non-zero strain can be evaluated. This

procedure is repeated for other macrostrain components (keeping the temperature difference
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zero) to obtain the entire stiffness matrix [C]. The orthotropic elastic constants of the

composite material can be easily determined by inverting the stiffness matrix, and

comparing the compliance coefficients with that of an orthotropic material.

To compute the six CTE's, a finite temperature change To is applied to all the

elements in the unit-cell; and periodic displacement BC's are imposed such that all the

macrostrain components are zero. Then the composite constitutive relation Eqn. (1) will

reduce to

{a M} = -[C]{a c} To (6)

The macrostresses for such a deformation are computed as described below. Knowing the

stiffness matrix [C], the composite CTE's are found as

1 [C]-I{o.M} (7){ac}_-

Table 1 presents the non-zero displacement BC's imposed on the unit-cell to obtain [C] and

the CTE's {ac}.

Table 1. Non-zero displacement BC's to obtain 3-D elastic constants and CTE's.

stiffness coefficients to be obtained non-zero displacement BC's

first column of [C] (_,11M = 1 ) ul(Ll, x2, x3) - ul(O, x2, x3) = L1

second column of [C] (E22 M = 1 ) u2(xl, L2, x3) - u2(xl, O, x3) = L2

third column of [C] (e33 M = 1 ) u3(xl, x2, L3) - u3(xl, x2, O) = L3

fourth column of [C] (_23 M = 1) u2(xl, x2, L3) - u2(xl, x2, O) = L3/2

us(x1, L2, x3) - u3(xl, O,x3) = L2/'2

fifth column of [C] (713 M = 1) Ul(Xl, x2, L3) - Ul(Xl, x2, O) = L3/2

u3(L_,x2, x3) - uHO, x2, x3) = L_/2

sixth column of [C] (_12 M = 1) Ul(X 1, Z2, x3) - Ul(X 1, O, x3) = L2/2

u2(L_, x2, x3) - u2(O,x2, x3) = L_/2

CTE's (ATM= 1) AT= 1
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The macrostresses for a given deformation state can be found by the following two

methods. In the first method, the macrostresses are obtained by averaging the nodal forces

on each face of the unit cell. For example, the macroscale o"M can be obtained as

1
aM -- L2L 3 2 FIn)(LI'X2'X3) (8)

n

where F_") is the nodal force in the xl direction at the nth node, and Z denotes summation
n

over all nodes on the face xl=Ll. Alternatively, the macrostresses can be computed by

volume-averaging the corresponding microstress component in the unit-cell. Then the

macrostress component trl_ is obtained as

- 1I- _ crll(x,y,z)dV (9)

v

where V is the volume of the unit-cell. The microstresses are computed at the quadrature

points, and numerically integrated over the volume in each element of the unit-cell.

2.1.3 Results and Discussion for 3-D Elastic Constants and CTE's

Example 1.

Example 2.

Example 3.

Example 4.

Example 5.

Example 6.

The above procedure was demonstrated for the following material systems:

isotropic material

bimaterial medium--both materials are assumed isotropic (Fig. 7)

unidirectional composite with identical Poisson ratios for fiber and matrix--

fiber and matrix materials are isotropic (Fig. 8)

unidirectional composite with different Poisson ratios for fiber and matrix--

fiber and matrix materials are isotropic

plain-weave textile composite (Fig. 9)--yarn geometry and properties

obtained from Dasgupta et al. (1990)

plain-weave textile composite--yam geometry and properties obtained from

Naik (1994)
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Example 7. 5-harness satin weave (Fig. 10)--yam geometry and properties obtained

from Naik (1994)

For the textile composite examples (examples 5-7), the yarn is assumed to be transversely

isotropic and the matrix material is assumed isotropic. The constituent material properties

for the examples are listed in Table 2.

Table 2.

Example 1

Example 2

Example 3

Example 4

Example 5

Examples 6, 7

Properties of constituent materials for examples 1-7.

unit-cell size:

E = 10 GPa, v=0.3, a=lOxlO-6/°C

O.500xO.500xO. 256 mm

layer 1 (E-glass):

layer 2 (epoxy):

unit-cell size:

EI=70 GPa, v1=0.200, al= 5x10-6/°C, V1=0.5

E2=3.50 GPa, v2=0.350, a2= 60x10-6/°C, V2=0.5

O.500xO. 500xO. 256 mm

fiber:

matrix:

unit-cell size:

Ef=lO0 GPa, vf=0.300, af= 10x10-6/°C, Vf=0.6

Em= lO GPa, Vm=0.300, am= 100x10-6/°C

lOxlOxlOktm

fiber (E-glass):

matrix (epoxy):

unit-cell size:

Ef=70 GPa, vf=0.200, af= 5x10-6/°C, Vf=0.6

Era=3.50 GPa, Vm=0.350, am= 60x10-6/°C

lOxlOxlOltm

yarn (glass-epoxy):
EL=58.61 GPa, ET=14.49 GPa, GLT=5.38 GPa, VLT=0.250

VTT=0.247, aL =6.15x10-6 /°C, aT=22.64x10-6 / °C, Vf=0.26

matrix (epoxy):
E=3.45 GPa, v=0.37, a=69x10-6 /°C

unit-cell size: 1.680x1.680xO.228 mm

yarn (graphite-epoxy):

EL=144.80 GPa, ET=ll.73 GPa, GLT=5.52 GPa, VLT=0.230

VTl'=0.300, aL =--O.324x10-6 /°C, aT=14.00x10-6/°C, Vf=0.64

matrix (epoxy):
E=3.45 GPa, v=0.35, a=4OxlO--6 /°C

unit-cell size: 2.822x2.822xO.2557 mm (Example 6)
7.055x7.055xO.2557 mm (Example 7)

Vi stands for the volume fraction of the constituent material
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Figure 7. Bimaterial example.

(a) bimaterial medium; (b) unit-cell.

Y
O0
O0

(a)

Z

X

(b)

Figure 8. Unidirectional composite example.

(a) composite; (b) unit-cell.
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Figure 9. Yarn pattern in a plain weave preform. (unit-cell boundary in dotted

lines)

Figure 10. Yarn pattern in a 5-harness satin weave preform. (unit-cell boundary

in dotted lines)
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A 3-D finite elementcodecalledItTEx-IO (pronounced as microtech) was written

and implemented for the seven examples to compute the homogeneous elastic constants and

CTE's. The user manual for/z TE Z- 10 is provided in Appendix-A. The unit-cell was assumed

to be a rectangular hexahedron with edges along the x-, y- and z- axes. The unit-cell was

divided into uniform-sized eight-node brick elements as shown in Figure 11. The number

of divisions along the x-, y- and z- axes are specified by the user. The elements were in

general, inhomogeneous elements, i.e., consisted of more than one constituent material.

While computing the element stiffness matrix, the material property at the Gauss integration

points was determined, and the corresponding elasticity matrix was used to perform the

integration over the element volume (see Section 5.1.2). Thus the element stiffness matrix

was obtained as the averaged stiffness of the different materials in the element. Periodic

displacement and traction boundary conditions were imposed between corresponding nodes

on opposite faces of the unit-cell. The numerical procedure to compute the element stiffness

matrix and to impose periodic BC's are discussed in Chapter 5. The skyline solver (Bathe,

1982) was used to solve for the nodal displacements. The computed elastic constants for the

seven examples are listed in Tables 3-5.

X

/

./ Ly

Figure 11.

(b)

3-D finite element mesh to compute elastic constants.

(a) unit-cell; (b) eight-node brick element.
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The ltTEx-IO code was first checked by computing the elastic constants for an

isotropic medium (Table 3). Then the code was implemented for a bimaterial medium. The

bimaterial medium consisted of two different layers of equal thickness in the xy-plane

alternating in the z-direction (Fig. 7). The effective Young's moduli, Poisson ratios and

CTE's of the bimaterial medium were derived exactly, as described below. The constitutive

relation (considering only the normal stresses) for each layer is defined as:

• • . C i Ei

ia#y = _,_= %114y i= 1,2 (I0)
• i i

LoLJ 033J['zzJ

where the superscript refers to the layer number. To derive Cll, C12 and C1._for the bimaterial

medium, exx M was assumed as one; and EyyM and EzzM were assumed to be zero. The

assumption of EzzM= 0 and the fact that the layers are of equal thickness imply that Ezz 1=

--Ezz2. The following constraints were, in addition, imposed across the bimaterial interface

EL ---- EL -----EM

2= M (11)Ely = Eyy Eyy

oL= oL=og

From the above interfacial constraints and Eqn. (10), the stresses in each layer were

computed. The stresses in the layers were volume-averaged to yield the corresponding

macrostresses, i.e., trxx M tTyy M and trzz M. Since exx M was equal to unity, the computed

macrostresses were identical to the stiffness coefficients in the first column, namely, Cll, C12

and C13. A similar procedure was followed to find the remaining stiffness coefficients and

CTE's for the bimaterial medium. The inplane shear modulus of the bimaterial medium was

computed as Gxy= (GI+ G2)/2 knowing that the shear strain was uniform in both layers. The

2G1G 2

isostress assumption was used to derive the transverse shear modulus as Gxz = G1 + G2.
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It was found that #TEz-IO results were identical to the elasticity results for the bimaterial

medium (Table 3).

Table 3.

Example 1

(isotropic

medium)

Example 2

(bimaterial

medium)

Continuum properties for examples 1 and 2 using finite elements.

#TEz-IO 10 10

(FEA)

exact 10 10

solution

_TEz-IO

(FEA )

ex, ey Cxz, vxz, Vxy

(GPa) (GPa) Gyz (GPa) Vyz

(GPa)

3.85 3.85 0.300 0.300

3.85 3.85 0.300 0.300

36.79 9.79 2.48 15.23 0.312 0.208

exact 36.79 9.79 2.48 15.23 0.312 0.208

solution

axq ay c az C

X X

10-6/°C 10-6/°C

10 10

10 10

8.19 59.60

8.19 59.60

Table 4.

Example 3

(uni

directional

composite)

Example 4

(uni
directional

composite)

Continuum properties for examples 3 and 4 using finite elements.

/_TEz-10

(FEA)

rule of

mixt./

Halpin-

Tsai eqns.

ItTEz-IO

flEA)

rule of

mixt./

Halpin-

Tsai eqns.

EL Er GLr Grr

(GPa) (GPa) (GPa) (GPa)

VLT VTT

63.55 36.48 12.93 9.94 0.300 0.232

64 34.55 11.26 13.29 0.300 0.300

43.12 18.15 5.59 3.92 0.242 0.222

43.40 14.79 4.45 5.91 0.260 0.252

aL CtT

x10-6 x10-6/o C

/oc

15.74 40.79

15.63 55.11

7.40 25.44

6.77 34.24

Table 4 presents the elastic constants and CTE's for the two unidirectional composite

examples. The unidirectional composite unit-cell is shown in Fig. 8. The unidirectional
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composite properties were compared with available analytical solutions. The rule of

mixtures formulae were used to predict EL and VLT ; the Halpin-Tsai equations (Halpin and

Tsai, 1969) for ET, GLT and v77" and Schapery's expressions (Agarwal and Broutman, 1990)

for the thermal coefficients aL and aT. To compare GTT, transverse isotropy was assumed in

Ear

the T-Tplane and computed as 2(1 + Vz.r)" However, the finite element results show that

the assumption of isotropy in the transverse plane is not valid. The assumption would give

Crrr as 14.81 GPa and 7.43 GPa for examples 3 and 4 respectively, thus grossly

over-estimating the finite element results. The relations for EL, VLT and aL are exact when

the poisson ratios are identical for the fiber and the matrix.

Table 5.

Example 5

(plain-

weave)

Example 6

(plain-

weave)

Example 7

(5-harness

weave)

Continuum properties for examples 5, 6 and 7 using finite elements.

pTEz-IO

(FEA)

Dasgupta

results

/t TEz-10

(FEA)

TEXCAD

pTEz-IO

(FEA)

F-.x,  xz, 6xy Vxz, Vxy axe,arC

(GPa) (GPa) Gyz (GPa) Vyz x10-6/°
(GPa) C

11.81 6.14 1.84 2.15 0.408 0.181 28.36

14.38 6.25 1.94 3.94 0.463 0.167 22.50

53.61 10.88 4.41 4.72 0.365 0.128 1.56

64.38 11.49 5.64 4.87 0.396 0.027 1.33

64.51 11.33 4.45 4.85 0.329 0.047 1.55

TEXCAD 66.33 11.51 4.93 4.89 0.342 0.034 1.46

azCx

10-6/oc

79.57

86.00

22.71

20.71

22.03

21.24

Figures 9 and 10 illustrate the weave patterns for the plain-weave (examples 5 and

6) and the 5-harness satin weave (example 7) respectively. The properties for example 5 were

compared with Dasgupta's results for an overall fiber volume fraction (Vf) of 0.26. The yam

properties were not specified in Dasgupta et al. (1990). So the rule of mixtures and
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Schapery'sexpressionswereusedto obtainthe yampropertiesfrom thegivenfiber and

matrixproperties.The/tTE Z- 10 results for examples 6 and 7 were compared with TEXCAD

--an approximate analytical method developed by Naik (1994). In both the examples the

overall fiber volume fraction was 0.64. The unit-cell was divided into 13x13x7 elements for

all three examples. The elastic constants for the three textile composite examples are

presented in Table 5. It must be noted that ltTEz-IO will marginally under-predict the

stiffness moduli--since the yam cross-section in the numerical model is approximated as a

polygon inscribed within the actual croSs-sectional area. Consequently the yarn/fiber

volume fraction in the numerical model will always be less than the theoretical volume

fraction.

2.2 Stress Gradient Effects

The methods explained in Section 2.1 assume that the unit-cells exist in all the three

directions. This will be true in the case of thick textile composites. However there are many

applications in which thin composites are used. In fact in order to take advantage of the

properties of composites, the structures have to be made of thin plate like members with

stiffeners for load transfer. In such cases there will be fewer unit-cells in the thickness

direction. Thus the free surface effects will be predominant. There will be severe stress

gradients through the thickness, and they will have an influence on the apparent stiffness and

strength of the structure (Marrey and Sankar, 1993a; Sankar and Marrey; 1993a).

The following simple example will illustrate the stress gradient effects on stiffness.

Consider a layered medium consisting of alternating layers of materials of equal thickness

with Young's moduli E1 and E2 respectively (Fig. 12a). Any micromechanical model would

predict that the medium can be considered as a homogeneous orthotropic material at

macroscale and also the effective Young's modulus in the longitudinal direction is

(El +E2)/'2, and there would not be any bending-stretching coupling in the principal material

direction. However, if we consider a bimaterial beam consisting of the same two materials
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(Fig. 12b),wewill find thatthereis a bending-stretchingcoupling,andalsotheflexural

rigidity cannotbepredictedfrom the Young'smodulusof the homogeneousorthotropic

mediumandthe total beamthickness.Thebimaterialbeamhaspropertiesandbehavior

different from the correspondinginfinite medium.This phenomenonis observedin the

transverseshearbehavioralso(S.ankarandMarrey, 1993b).A similar behavioris also

expectedin thin textile compositeswherethereare fewer unit-cells in the thickness

directions,andtheunit-cellsarenotsubjectedto amacroscopicallyhomogeneousstateof

deformationasassumedin Section2.1.

(a) (b)

Figure12. Exampleto explainstressgradienteffects.
(a)Layeredmedium;(b)Bimaterialbeam.

Onemethodof overcomingtheabovedifficulties in thin textile compositesis to

modelthecompositeasaplate/beam,andcomputethestructuralstiffnessproperties(e.g.,

[A], [B] and[D] of theplate)directlyfrom theunit-ceUanalysisinsteadof thecontinuum

stiffnesspropertiessuchasYoung'smodulus,shearmodulusetc.In thefollowingsections

we illustratetheseconcepts--firstfor athin textilecompositemodeledasabeam(Sankar

andMarrey,1993b;MarreyandSankar,1993b)andthenfor atextilecompositeplate.The

purposeof thebeammodelis to presentthe issuesinvolvedin computingthe structural
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stiffnesscoefficientsasopposed to continuum elastic constants. Further the periodic BC's

are different from those in the continuum model.

2.3 Unit-Cell Analysis for Beam Thermo-Mechanical Coefficients

In this section, a procedure for finding the equivalent flexural stiffness properties and

thermal coefficients of a textile structural composite beam is described. The textile

composite beam is assumed to be in the xz-plane with unit-cells repeating in the x-direction.

A state of plane strain parallel to the xz-plane is assumed. On the macroscale it is assumed

that the beam is homogeneous and its behavior can be characterized by the following beam

constitutive relation :

M = |K12KzzK23| ug _
[K13 K23 K33J yoM Lav J

where P, M and V are the axial force, bending moment and transverse shear force resultants,

respectively; [K] is the symmetric matrix of beam stiffness coefficients; eo M, _:Man d ),oMare

the midplane axial strain, curvature and transverse shear strain respectively; ap, aM and av,

respectively, are the beam thermal expansion, thermal bending and thermal shear

coefficients. The midplane deformations are related to the midplane axial displacement Uo,

transverse displacement w, and rotation _0 as:

EMo _ OUMo _,M_ tg_ M
Ox ' Ox '

,_M = 1tiM + OW__._M (13)
Ox

Actually, Kll, 1(12, K22 and K33 are similar to the laminate stiffness coefficients Ali, Bll, 911

and _2A55 ' respectively. There is no equivalence for 1(13 and K23 in the laminate theory,

because the layers are assumed to be orthotropic, and they are rotated about the z-axis only.

However, such a coupling between inplane deformations and transverse shear deformation

may exist in textile composites as the fibers are inclined to the xy-plane unlike in the
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laminates.Thebeamconstitutiverelationin Eqn.(12) canalsobeexpressedin termsof

compliancecoefficientsas:

= /S12 $22 $23 / "F aM AT (14)

LS_s_, s,d la_J

2.3.1 Beam Steady State Loading Conditions

(a)

P

(b)

(c)

Figure 13. Steady state loading for a beam.

The continuum unit-cell analysis assumes that all the unit-cells are subjected to

identical stress and strain fields, for a given state of loading. This is true in the case of

constant axial force (P) and constant bending moment (M) in the beam (Figs. 13a and 13b).
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However, when a shear force (V) is applied to the beam, the shear force will give rise to

building up of bending moment at every cross-section, such that V = - (dM/dx). This bending

moment varies linearly over the length of the beam violating the assumption of

homogeneous deformation. A state where the unit-cells are subjected to identical

deformation under a shear force can be created by adding a couple periodically (Fig. 13c),

or by having shear tractions on the top and bottom surfaces to cancel the bending moment

continuously (Fig. 13d). In both cases traction-free conditions are violated on the top and

bottom surfaces of the beam. As will be seen later, this situation creates difficulties in

estimating the shear stiffness of the beam accurately.

2.3.2 Unit-Cell Boundary Conditions

The left end of the unit cell, x=O (Fig. 14) are subject to minimum support constraints

to prevent rigid body translation and rotation. The top and bottom surfaces of the beam are

assumed to be traction free. The edges x=O and x=L have identical nodes in the finite element

model and periodic BC's are enforced between these nodes. Three linearly independent

deformations were applied to the unit-cell, in order to find the beam stiffness matrix [K]

namely,

Case (i)

Case (ii)

unit axial strain (e M = 1,x M = 0,y M = 0)

unit curvature accompanied by transverse deflection such that the transverse

shear strain was zero (e M = 0,_ M = 1,y M = 0)

Case (iii) unit transverse shear strain (eft = 0,x M = 0,_ M = 1)

The periodic displacement constraints applied for each deformation case are presented in

Table 6.
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Table 6. Periodic displacement BC's for beam unit-cell.

u(L,z)-u(O,z) w(L,z)-w(O,z) AT

Case i. unit axial strain (eoM=l) L 0 0

Case ii. unit curvature (_¢M=1) Lz -L2/2 0

Case iii. unit shear strain (yoM=l) 0 L 0

Consider the second deformation case, where a curvature is applied to the unit-cell. Let 'm'

and 'n' be a set of corresponding nodes on the left and right ends of the unit-cell. The periodic

BC's imposed between the nodes 'm' and 'n' are shown in Fig. 14. Applying a curvature to

the unit-cell also induces transverse shear strain due to the 7)M term in the expression for y0m

(Eqn. 13). The difference in displacement in the z-direction is therefore imposed to make the

macroscopic transverse shear strain equal to zero.

v

n

u ra - u n = Lhn

w m - w n = - L2/2

Figure 14. Boundary conditions pertaining to the deformation to _M_ O, eoM=O,

_,oM---0.
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2.3.3 Determination of Beam Stiffness Coefficients

The three linearly independent deformations described in the preceding section are

applied to the unit-cell. The temperature difference (A 7") is set to zero for all three

deformations. For each case, the axial force P, the bending moment Mc and the shear force

resultant V are computed from the nodal forces at the ends of the unit-cell. As explained

earlier, the axial force and shear force are constant through the unit-cell, but the bending

moment varies linearly across the unit-cell length. Therefore the bending moment at the

center of the unit-cell is used as the reference moment, which is obtained by averaging the

bending moment resultants at the ends of the unit-cell. From the force resultants, a

pseudo-stiffness matrix [k] can be computed that relates the forces and deformations as

k21k22k23J:k31 k32 k33j yM

(15)

For example, k11, kel and k31 will correspond to the values of P, Mc and V obtained for the

case of unit axial extension of the unit-cell (Case i). The pseudo stiffness matrix, in general

will not be symmetric since it does not relate corresponding forces and deformations

(conjugate quantities, product of which yields an energy term)--it can be rather considered

as a matrix of influence coefficients. The inverse of [k], denoted by [s] has some significance.

The matrix [s] is defined as

fSllSt ft$21 $22 $23 [ = _M

s31 S32 $33 j _M

(16)

We know that V=O is a steady state loading condition such that Mc =M, where M is the

constant bending moment along the unit-cell. Noting that only the last column of [s]

multiplies with V, and comparing Eqns. (14) and (16), we can conclude that the first two

columns of [S] and [s] must be identical to each other. Since [S] is symmetric ($1._ =$31,



30

$2:_=$32), we can determine all but $3_ of the beam compliance matrix [S]. An alternative

approach to predict the shear compliance $33 is explained in the next section.

2.3.4 Determination of Beam Shear Stiffness

The difficulty in estimating $33 (or K_:_) is associated with the inability to create a

state of deformation such that only Vis present. The shear modulus of the textile composite

Gxz can be computed by assuming that the unit-cells span the material in the z-direction also.

In that case periodic BC's are imposed between the top and bottom surfaces of the unit-cell,

and the unit-cell is deformed transversely. Then, there will be shear tractions on the top and

bottom surfaces of the beam--in fact this situation would correspond to Fig. 13(d). One may

surmise that a shear correction factor _2 could be found such that K33 =_t2Gxz h. But a simple

bimaterial beam example will show that the shear stiffness can be grossly underestimated.

Consider a bimaterial beam with layers of equal thickness (h/2). By performing a

continuum unit-cell analysis the shear modulus of the material is found to be equal to 2(31 G2

/ ( GI + G2 ). Assuming G1/G2 = 10, Gxz = O.182 G1. However the actual shear stiffness K33

is equal to _t2(G1 + (32) h/2, which means that the apparent shear stiffness Gxz = (G1 + G2),/2

= 0.55G1. This is about three times the previous estimate. This discrepancy is due to differing

assumptions regarding the constancy of shear stress or shear strain. The continuum unit-cell

analysis imposes constant shear stress in the two materials, and hence the shear compliance

of the composite is the average of the compliances of the constituent materials. This is true

when there are a large number of unit-cells in the z-direction. In a bimaterial beam, however,

the shear strain is almost constant in the two layers, and hence the shear stiffness is the

average of the shear stiffness of the individual layers--which is consistent with the method

of computing A55 in the lamination theory. This illustrates the need for special procedures

for predicting the shear stiffness of thin textile composite beams.

To overcome this problem we use an energy approach to compute the shear stiffness

of a thin textile composite. We model a beam of length 2L consisting of two unit-cells, with
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planestrainfinite elements.Thebeamis subjectto boundaryconditionscorrespondingto

pureshearstrain(thirdboundaryconditionin Table6).Thetopandbottomsurfacesof the

beamaretractionfree.TheshearstrainenergyoveralengthL in the middle of the beam, Us,

is computed from the finite element results as

Us = A..,_\2] xz xz t (17)

where r(i)x z and y(i)xz are the shear stress and shear strain at the center of the ith element and

Ai is the area of the ith element. The summation is performed over all elements located in a

length L in the middle of the beam. Next, the shear strain energy over the same length L is

computed using the beam formula:

In the above equation P, Mc and V can be obtained from the finite element results. The

coefficients $13 and $23 have already been estimated. Then by equating the shear strain

energy quantities in Eqns. (17) and (18), the only unknown, that is S._3, can be evaluated. The

choice of two unit-cells to perform the above analysis deserves an explanation. When this

was tried with one unit-cell for the cases of isotropic and bimaterial beam, the results were

not good. It was mentioned earlier, that the application of a shear force would result in a

couple at the unit-cell ends to continuously cancel the effect of the bending moment created

along the beam length. This couple is manifested in the finite element results as concentrated

forces at the four corners of the unit-cell, thus creating severe stress concentrations. When

two unit-cells are used in the model, the stress concentrations remain in the corners of the

beam, but their effects diminish in the middle portion of the beam. As will be seen in the later,

the two unit-cell method gave very good K33 for both isotropic and bimaterial beams.

2.3.5 Determination of Beam CTE's

The procedure for determining the beam thermal expansion coefficients (Marrey and

Sankar, 1993b) is as follows. The beam unit-cell is subject to a uniform temperature
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differencegiven by A T = TO. The deformations in the beam are restrained by setting

eoM=_M=7oM=O. Then the beam constitutive relation, Eqn. (12), will reduce to

}= - /K12 K22 K231 ' aM TO (19)

[K13 K23 K33J av

The axial force P, the bending moment resultant at the center of the unit cell Mc and the shear

force Vare computed from the nodal forces at the ends of the unit-cell. Then the beam CTE's

can be estimated from the expression,

• a M = __..!_1 -1

a v To [K] (20)

2.3.6 Results and Discussion

(a)

(b)

(c)

The procedures described above were implemented for the following cases:

an isotropic beam

a bimaterial beam with isotropic layers of equal thickness

a plain weave textile composite beam where the yam is assumed to be transversely

isotropic and the matrix is isotropic.

Table 7.

isotropic beam

Constituent material properties for beam examples.

Ibimaterial beam

plain-weave
textile beam

E = 10 GPa, v = 0.30, a = 10xl0 --6/oc

E1 = 70 GPa, Vl = 0.33, al = 23x10 -6/°C

E2 = 3.5 GPa, v2 = 0.35, a2 = 60x10 -6/°C

yarn:

E1 = 159 GPa, E2 = 10.9 GPa, G12 = 6.4 GPa,

v12 = 0.38,v23 = 0.38, ctI - 0.045x10 --6/oc, a2 = 20.2x10 -6/°C

where the yam direction is parallel to the/-axis and 23-plane
is the plane of isotropy.

matrix:

Em = 3.5 GPa, Vm = 0.35, am = 60x10 -6/°C.
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The propertiesof the constituent materials for all the cases are listed in Table 7. The

dimensions of the unit-cell and the yarn architecture for the textile beam were taken from

Yoshino and Ohtsuka (1982). The same unit-cell dimensions (length of 3.6 mm and height

1.8 mm) were also used for the isotropic and bimaterial cases. The unit-cell of the beam was

discretized using eight-node isoparametric plane strain finite elements. The finite element

mesh for the isotropic unit-cell and the plain weave unit-cell were identical except that

different material properties were used.

Table 8.

isotropic

beam

bimaterial

beam

textile

beam

Comparison of beam stiffness coefficients and CTE's (SI units).

unit-cell

analysis

beam

theory

unit-cell

analysis

bealn

theory

K/1

19.78x106

19.78x106

74.29x106

74.29x106

27.76x106unit-cell

analysis

//12 Ke2

0 5.35

0 5.34

30.20x103 20.06

30.20x103 20.06

0 5.41

mosaic 71.48x10 -6 0

model

8.13

K33 ap /°C aM/°C

5.96x106 lOxlO -6 0

5.77x106 lOxlO-6 0

8.47x106 30.73x10-6 -14.62x10-3

8.62x106 30.74x10 -6 -14.63x10-3

9.21x106 12.66x10 _ -24.12x10 -6

8.14xlO 6 4.39x10-6 0

Note: K13, K23 and av are zero for all cases

The deformed unit-cells under various independent loading conditions are shown in

Figs. 15 to 17. The stiffness and thermal coefficients for the three beams are shown in Table

8. The results for the isotropic and bimaterial beams were compared to exact beam theory

solutions. Exact shear correction factors--0.833 for the isotropic beam and 0.555 for

bimaterial beam (Whitney, 1973) were used in the beam theory solution to compute the shear

stiffness given in Table 8. It can be seen from Table 8 that the beam unit-cell analysis is able
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tO predict the axial and bending stiffness coefficients (Kll and K22) very accurately. As

expected the shear stiffness (K33 orA55) predictions have errors, but they are very minimal.

It can be noticed that the comers of the unit-cell are severely deformed (Figs. 15c, 16c and

17d), when the unit-cell is subject to constant shear strain leaving the top and bottom surfaces

traction free. However when shear tractions are allowed on the top and bottom surfaces of

the unit-cell, the distortions at the comers disappear (Figs. 15d, 16d and 17e). Then what is

obtained is the shear modulus Gxz and not the beam shear stiffness. The shear modulus of

the plain weave beam was found to be 3.07 GPa. This would yield the apparent shear stiffness

as Gxzh =5.53 x 106 Nm -1 ; whereas the actual shear stiffness is 9.21 x 106 Nm -1 (K33 in Table

8). The Young's modulus of the textile beam Ex may be extracted from Kll, as K11/h, which

would yield Ex = 15.42 GPa. If this value of Ex were used to predict the flexural stiffness of

a homogeneous beam as Dll = Exh3/12, we would obtain Dll as 7.50 Nm--whereas the

actual flexural stiffness is equal to 5.41 Nm. The same idea holds for the beam thermal

coefficients also. The beam CTE's _Zp, _M and av cannot be predicted from the

corresponding continuum CTE's. Table 9 shows the discrepancy, for the plain weave

example, between the beam CTE's obtained directly and the beam CTE's obtained from the

corresponding continuum CTE's. It may be noted that the continuum model would always

predict the thermal expansion coefficient ap as a x, and the thermal bending coefficient aM

as zero. This underscores the importance of the present analysis for predicting the beam

stiffness properties for a thin textile composite directly.

Table 9. Comparison of textile CTE's.

ap x 10 --6 /°C

aM x 10-6/°C/m

av /°C

CTE's from

beam model

12.66

-24.12

0

CTE's from

continuum model

11.30

0

0

% error

-10.46

OO



35

(a)

(b)

(c)

(d)

Figure 15. Deformed unit-cell of the isotropic beam. (not to scale)

(a) unit extensional strain; (b) unit curvature; (c) unit shear strain, top and
bottom surfaces are traction free; (d) unit shear strain, tractions allowed on

top and bottom surfaces.
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(a)

(b)

(e)

(d)

(e)

Figure 17. Textile beam. (not to scale)

(a) undeformed unit-cell; and deformation under: (b) unit extensional strain;

(c) unit curvature; (d) unit shear strain, top and bottom surfaces are traction

free; (e) unit shear strain, tractions allowed on top and bottom surfaces.
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Thetextilebeamstiffnesscoefficientswerealsoestimatedusingaproceduresimilar

to themosaicmodel(IshikawaandChou,1982a).Theyarecomparedwith thecoefficients

obtainedfrom theunit-cellanalysis(Table8).Theidealizationmadein themosaicmodel

isshowninFigure18.Theunitcell isdividedintofivesegments,witheachsegmentmodeled

asacross-plylaminatewithastackingsequencewhichbestrepresentedtheyarnarchitecture

within that segment.The stiffnessmatrixof eachsegmentwascomputedusinglaminate

analysis.Thenthecomplianceof thetextilebeamwascomputedasthelength-weighted

averageof thecomplianceof thefive segments.

5
[S] = (1)_ Lk[S]k (21)

k=l

From Table 8, it can be seen that the mosaic model predicts K33 reasonably well. The reason

for the lack of agreement in Kll and K22 can be attributed to the fact that a major portion of

the yarn is modeled as a 0 ° laminate in the mosaic model, which tends to over-predict the

axial and flexural stiffnesses.

_]0 deg. laminate t._F"7 90 deg. laminate matrix material

Figure 18. Mosaic model of the textile unit-cell.
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2.4 Plate Thermo-Mechanical Coefficients

The previous section described the concepts involved in modeling a thin textile

composite structure as a.. homogeneous beam to predict the beam stiffness coefficients and

CTE's. The procedure is extended in this section, utilizing three-dimensional finite element

analysis, to model the thin composite as a plate (Sankar and Marrey, 1992) to determine the

corresponding thermo-elastic coefficients.

The plate is assumed to be in the xy-plane with unit-cells repeating in the x- and

y-directions. The lengths of the unit-cell in the x- and y-directions are assumed to be a and

b respectively and the unit-cell thickness as h. On the macroscale the plate is assumed to be

homogeneous and the plate behavior is characterized by the plate constitutive relation:

"N x "eM "aPx'i ]
M

Ny _yO a; IUxy
(22)

Mx _M flPx

My _M f;

Mxy

where eio M _,ioM and _i M are the midplane axial strain, shear strain and curvature; aip and

fli p are the plate thermal expansion and bending coefficients;/_ and Mi are the axial force

and bending moment resultants respectively in the homogeneous plate. The plate stiffness

matrix comprises of the [A], [B] and [D] sub=matrices, which are the plate extensional

stiffness, coupling stiffness and bending stiffness matrices respectively. The plate stiffness
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matrix can be expanded as:

"All A12 A16 Bll B12 B16"

A12 A22 A26 B12 B22 B26

A16 A26 A66 B16 B26 B66

Bll B12 B16 Dll D12 D16

B12 B22 B26 D12 D22 D2_

B16 B26 B66 D16 D26 D6_

(23)

The midplane strains and curvatures are related to the midplane displacements and rotations

as:

OUo OVo OUo OVo

e_ - Ox ' e_° = O--y-' Y:_yo - _ + -_ (24)

O_y O_x O_)yOx ' _ , (25)

2.4.1 Unit-Cell Boundary_ Conditions

The plate thermo-mechanical properties are obtained by modeling the unit-cell with

eight-node brick elements and subjecting the unit-cell to six linearly independent

deformations. The six deformations are given by: (1) unit eM maintaining the rest of the

M such that remaining strains andmacroscopic strains and curvatures as zero; (2) unit eyo

curvatures are zero; and similarly (3) unit MYxy0; (4) unit zM; (5) unit xM; (6) unit zM. In the

last three cases (non-zero curvatures) the deformation was accompanied with a transverse

deflection such that the transverse shear strain was zero (Table 10).



41

Table 10. Periodic displacement BC's imposed on the lateral faces of the plate unit-cell.

1. e.xoM= l

2. e.yOM=l 0 0

3. _,xyoM= l 0 al2

4. UxM= 1 az 0

5. uyM= l 0

6. Uxym= l 0

7. A TM= 1 0

u(a,y)- v(a,y)- w(a,y)- u(x,b).-- v(x,b)- w(x,b)- AT

u(O,y) v(O,y) w(O,y) u(x,O) v(x,O) w(x,O)

a 0 0 0 0 0 0

0 0 b 0 0

0 b/2 0 0 0

-a2/2 0 0 0 0

0 0 0 bz -b2/2 0

az/2 -ay/2 bz/2 0 -bx/2 0

0 0 0 0 0 1

a

z

Y

u=O, w=O
x

Figure 19. Boundary conditions on plate unit-cell to restrain rigid body
translation and rotation.

The unit-cell is subject to minimum support constraints to prevent rigid body rotation

and translation (Fig. 19). The top and bottom surfaces of the plate are assumed to be free of

tractions. The faces x=O and x=a have identical nodes in the finite element model, and so

do the pair of faces y=O and y=b. The identical nodes on opposite faces of the unit-cell are

constrained to enforce the periodic BC's. The traction boundary conditions on the lateral

faces of the unit-cell are:
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Fi(a, y, z) = - Fi(0, y, z)

Fi(x, b, z) = - Fi(x, 0, z) i = x, y, z (26)

The periodic displacement BC's enforced for each mode of deformation are presented in

Table 10.

2.4.2 Determination of Plate Stiffness Coefficients and CTE's

The six linearly independent deformations are applied to the unit-cell such that only

one of the macroscopic strains or curvatures is non-zero (first six cases in Table 10). The

temperature difference is set to zero for all six cases. It must be noted that the applied

deformations must ensure that the transverse shear strains, )'xz M and 7yz M are zero where

= +
ax
aw (27)

The force and moment resultants can be obtained by one of the following two methods. In

the first method, the resultants are computed by averaging the nodal forces on each face of

the unit-cell. For example, on the face x=a the force and moment resultants are computed

using the relations:

Nx=(_)ZF(xi)(a,Y,Z)
i=1

Nxy = (1)_ F(yil(a,y,z)
i=l

Mx= (1) ZzF(xi)(a,y,z)
i=1

n

Mxy=(_)ZzF(yi)(a,Y,Z)
i=1

(28)

where Fx (i) and Fy (i) are the nodal forces in the x and y directions at the ith node and 'n' is

the total number of nodes on the face. The force and moment resultants can also be computed
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by averagingthemicrostressesover the unit-cell volume. Then the resultants on the face x=a

= I f trxx(x'y'z)dVab Nxy - 1 fVxy(X,y,z)dV (29)Nx - a---b

v v

= 1 I zt:rxx(X' y' z)dV Mxy - 1 I ZVxy(X,y, z)dV (30)Mx a'-b ab
v v

are obtained as

Substituting the values of the deformation and the force resultants in the plate constitutive

relation, Eqn. (22), the stiffness coefficients in the column corresponding to the non-zero

deformation can be computed. This procedure is repeated for other deformation components

to obtain all the stiffness coefficients.

To predict the CTE's, the plate unit-cell is subject to a uniform temperature

difference, given by A T = TO. In the finite element model, periodic displacement BC's are

applied such that all six components of the deformation are zero (seventh case in Table 10).

The averaged force and moment resultants are computed using one of the procedures

described above. The thermal expansion coefficients aP, and thermal bending coefficients

tiP are then obtained from the relation:

-1

1tip = T O B D M
(31)

2.4.3 Results for Plate Stiffness Coefficients

The plate [A], [B], [D] matrices and CTE's were found for the seven examples listed

in Table 2 by implementing the finite element code IuTEz-IO. As a preliminary check, the

code was executed for an isotropic plate and compared with the plate properties using

Eh and Dll as
lamination theory (for one-ply). For example, All was calculated as (1 - v 2)

Eh3 Then the properties were computed for a bimaterial plate using the finite
12(1 - v2)"
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element code. The plate properties for the isotropic and bimaterial cases are presented in

Tables 11 and 12 respectively. The bimaterial plate properties were also computed using the

lamination theory for two plies, and from the homogenous 3-D elastic constants computed

in the previous section (Section 2.1). For example the coefficient Dll is obtained from the

EMh 3

3-D elastic constants as Dll = 12(1 - v_g2) "The finite element results for the bimaterial

case were exact, i.e., identical to the results obtained with the two-ply lamination theory. The

[D] matrix computed from the bimaterial 3-D constants was found to be in good agreement

with the two-ply lamination theory only because both the layers were equal in thickness. This

is a special case, and in general, the [D] matrix obtained from the 3-D elastic constants will

be different from the two-ply lamination theory results.

The plate properties for the unidirectional composite examples are presented in Table

13 and for the textile examples in Table 14. In all the examples it was found that the plate

properties, especially [B], Dll, {aP} and {/3P} could not be predicted from the corresponding

3-D elastic constants.

Table 11.

finite elements

All

xl06

ltTEz-IO 2.810

flEA)

lamination 2.810
theory

Non-zero [A], [B] and [D] coefficients for example 1 (isotropic plate) using

AI2 A22 A_

xl06 xl06 xl06

0.843 2.810 0.983

0.843 2.810 0.983

DH /)12

x10-3 x10-3

15.320 4.606

15.310 4.593

D22 966 ax p, ayP

x10-3 x10-3 x 10-6/0C

15.320 5.358 10

15.310 5.358 10

Note: [A], [B] and [D] coefficients in SI units
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Table 12. Non-zero [A], [B] and [D] coefficients for example 2 (bimaterial plate) using

finite elements

I_ TEz- I O

(FEA)

lamination theory

for two plies

lamination theory

using 3-D elastic
constants

All, A22

xl06

9.832

9.832

9.844

A12

xl06

2.043

2.043

2.048

A66

xl06

3.895

3.895

3.899

nll, B22

xl03

- 0.563

- 0.563

0

B/2

xl03

- 0.108

- 0.108

0 0

B66

xlO-3

- 0.228

- 0.228

Oll, 922 912 D66 t_xP _yP fix p flyP

xl0 -3 x10-3 x10-3 x10-6/o C /OC/m

ItTEz-IO 53.590 11.149 21.220 17.800 0.170

(FEA)

lamination theory 53.573 11.131 21.220 17.814 0.170

for two plies

lamination theory 53.762 11.183 21.293 8.190 0

using 3-D elastic
constants

Note: [A], [B] and [D] coefficients in SI units
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Table 13. Non-zero [A], [B] and [D] coefficients for examples 3 and 4 (unidirectional

composite) using finite elements

Example 3

Example 4

I,t TEz- IO

(FEA)

Halpin-Tsai Eqns.
and lamination

theory

/,tTEz-10

(FEA)

Halpin-Tsai Eqns.
and lamination

theory

All

xl06

0.690

0.673

0.452

0.444

A12

xl06

0.149

0.109

0.062

0.039

A22

xl06

0.496

0.363

0.285

0.151

A66

xl06

0.177

0.113

0.114

0.045

Example 3

Example 4

It TEz- IO

(FEA)

Halpin-Tsai

Eqns. and
lamination

theory

It TEz- IO

(FEA)

Halpin-Tsai

Eqns. and

lamination

theory

Dll 1912

x10-6 x10-6

3.589 0.596

5.606 0.908

2.256 0.224

922 066 _xPx _yPx

x10-6 x10-6 10-6 10-6

1.980 0.947 15.489 26.184

3.026 0.939 15.625 55.112

0.873 0.568 7.378 13.188

3.702 0.328 1.262 0.371

Note: [A], [B] and [D] coefficients in SI units

6.774 34.239
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Table 14. Non-zero [A], [B] and [D] coefficients for examples 5, 6 and 7 using finite
elements

Example 5

Example 6

Example 7

I,t TEx- IO

(FEA)

lamination theory

using 3-D constants

#TEx-IO

(FEA)

lamination theory

using 3-D constants

tuTEx- IO

(FEA)

lamination theory

using 3-D constants

All, A22

xl06

2.681

2.783

12.090

13.938

14.683

16.531

A/2

xl06

0.565

0.503

3.470

1.787

1.351

0.770

A66

xl06

0.489

0.490

1.223

1.208

1.210

1.239

Bll x 10 3

0

0

0

0

0.495*

0

Example 5

Example 6

Example 7

I,tTEz-IO

(FEA)

lamination

theory using
3-D constants

/uTEz-IO

(FEA)

lamination

theory using
3-D constants

I,tTEz-IO

(FEA)

lamination

theory using
3-D constants

* In example 7, B22 = -Bll and t3

911, 922

x10-3

5.687

12.054

41.695

75.942

90.072

87.283

,P = --.fixp

D12

x10-3

1.518

2.177

0.373

9.734

1.123

4.195

D66

x10-3

1.577

2.124

5.879

6.582

6.149

6.753

Note: [A], [B] and [D] coefficients in SI units

27.465

28.363

1.480

1.556

2.910

1.550

fix p

/°C/m

0

0

0

0

-0.037*

0



CHAPTER 3

ANALYTICAL MODELS FOR THERMO-ELASTIC CONSTANTS

The complex yarn architectures in a textile composite make numerical modeling of

the unit-cell extremely difficult. Besides, the computational memory and run-time

requirements for a detailed finite element analysis are enormous. As explained in the

introductory chapter, there are several parameters that can be changed to alter the effective

composite properties. These parameters may be the fiber material in the yarn, fiber volume

fraction in the yam (also called yam packing density), overall fiber volume fraction, preform

architecture or the matrix material propertiesl This emphasizes the need for simple analysis

procedures to predict the trend in variation of composite properties when one of the

parameters is changed. These procedures will be of use to a designer in determining the

optimum parameters for a certain application.

Analytical methods are approximate because they assume certain forms for the state

of stress and strain in the unit-cell. Averaging the stiffnesses or compliances of the matrix

and the inclusion has long been used to estimate the bounds of effective elastic properties

of the composite. Essentially the stiffness averaging assumes a state of uniform strain in the

composite (isostrain), and compliance averaging assumes a state of uniform stress (isostress)

in the matrix and inclusion. In fact the rule of mixtures expressions for estimating the

effective properties of a unidirectional composite is based on such averaging schemes. Naik

(1994) proposed an analytical method (TEXCAD) in which the yams are discretized into

segments. Knowing the direction of the yam in each segment, the segment stiffness are

computed using appropriate transformations. Then assuming a state of isostrain, the

composite stiffness is obtained by volume-averaging the yam-segment stiffness and matrix

stiffness in the unit-cell. This method seems to work, when there is multi-directional

48
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reinforcementin thecomposite.Howeverthemethodfailsfor compositeswith preferential

yamreinforcement.Forexample,thetransversemodulusandtheinplaneshearmodulusfor

aunidirectionalcompositecannotbeestimatedusingtheabovemethod.Anotheranalytical

modelcalledthemosaicmodel,wasproposedbyIshikawaandChou(1982a).As discussed

earlier,in themosaicmodeltheyamarchitectureis simplifiedto thatof across-plylaminate

andthelaminationtheoryisusedto predictthecompositeproperties.

Thestateof stress/strainin atextilecomposite,subjectedto auniformmacrostress,

is muchmorecomplexthanthatassumedin theabovementionedmethods.Weproposea

schemeof selectiveaveraging---calledtheselectiveaveragingmethod(SAM)--in which

bothstiffnessandcompliancecoefficientscanbeaveragedselectivelydependingonamore

realisticassumptionof eitherisostressor isostrain.

3.1 Selective Averaging Method (SAM) for Continuum Properties

In this section, we describe SAM for estimating the effective elastic constants and

CTE's for a textile composite. Consider a rectangular hexahedron of dimensions a x b x c

as the unit-cell. The unit-cell is discretized into slices on the mesoscale, and elements on the

microscaie as shown in Fig. 20. To distinguish between the macrolevel, mesolevel and

microlevel properties in this section, an over-tilde is used to denote the mesolevel properties,

and a superscript "M" is used to denote the macrolevel properties. For example, [cM], [

and [C] will represent the macrolevel, mesolevel and microlevel stiffnesses respectively.

The objective here is to determine the coefficients of the effective stiffness matrix

[C M] as defined in Eqn. (2). To find the first column of the effective stiffness matrix, the

unit-cell is divided into slices (mesolevel) of thickness dr parallel to the yz-plane (Fig. 20a).

Each slice is further sub-divided into elements (microlevel) as shown in Figs. 20(b) and

20(c). The unit-cell is subjected to a deformation such that all macrostrains except _xx M are

equal to zero and exxM=l. It is assumed that the mesolevel and microlevel strains,
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correspondingto thezeromacrostrains,arenegligible.In otherwords,

EM = Ei : Ei = 0 i _ 1 (32)

RB

iiii_i_!_i_!_!_!_i_i......................................:::::::::::::::::::::_!_i_'i_i_ii_i_i_ii_i_!_i_i_i_i_i_ii_
:::::::::::::::::::::::::::::::::::::::::::::_:::::::_::_:

!i!i!i_i_i_:i_ii!i!i;ii::.............................................

_i!i'.ii:ii_iiiiiiii:_ii!!iii!i!iiii!i!iiiiiiiii!i!iiii'iiiiiii

• i.ii ......

X

C

Y

(a) (b) (c)

Figure 20. Hierarchy of discretization for a unit-cell to determine first and fifth
columns of effective stiffness matrix.

(a) unit-cell; (b) slice; (c) element.

Assuming a state of isostrain within the slice (exx(X, y, z) = g(x) ) the average stiffness of

a slice can be obtained as:

c b

z-Oy_.O

Cll(X,y,z) dy dz (33)

where CH(x,y,z) is the element stiffness coefficient referred to the unit-cell coordinates. The

stiffnesses of the slices are averaged on the macrolevel based on the isostress assumption,

i.e., Cixx(X) = a M . Then the first column of the effective stiffness matrix can be computed

using the following two relations:
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a

1 _1 f 1 dx
C1_ a _11(X)

x=O

(34)

c b a

ciMI- alc r r ,"i i i fM__!l Cil(x'Y 'z) dxdydz (i= 2 ..... 6) (35)
C'I l(X),l,d,/

z=Oy=Ox=O

A similar procedure can be implemented to determine the second and third columns of the

macroscale stiffness matrix [cM].

A slightly different averaging scheme is used when the unit-cell is subjected to shear

strains on the macrolevel. Consider the case where the unit-cell is subjected to unit Yyz at

macroscale. The unit-cell is again discretized into slices and elements as shown in Fig. 20.

It is assumed that all the other components of strain at the macrolevel, mesolevel and

microlevels are zero. This can be expressed as:

_M = t_i = ei = 0 i _ 4 (36)

where e4 = Yyz. We also assume that the shear stress is constant in a slice such that

ryz(X, y, z) = fyz(X). The shear compliance of a slice can then be obtained by averaging the

shear compliances of all the elements in the slice as:

c b

_44(x) bc C44(x, y, z) dy dz (37)
z=Oy=O

The fourth column of the stiffness matrix Ci4 M is obtained under the assumption that all the

slices are under a state of constant shear strain:

c b a

Ci_--1 fffab'-"_ C_-'_-_,y,z) Ci4(x'Y'Z) dx dy dz (i = 1..... 6) (38)

z=Oy=Ox=O

A similar procedure is used to determine the fifth and sixth columns of [cM].
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To determinethe macroscaleCTE's, a uniform temperaturedifference(AT) is

applied throughout the unit-cell. The unit-cell is constrained from expanding such that all

the strain components on the macrolevel are zero. A state of isostrain is assumed in the

unit-cell, implying that the mechanical strain components on the mesolevel and microlevel

are also zero. This can be expressed as:

eM = ei = ei = 0 i = 1..... 6 (39)

Then the thermal constitutive relations on the macrolevel and microlevel will reduce to:

{a M} = -- [C M] {aC}AT

{a} = - [61 {a }AT
(40)

The macrostresses may be computed by volume-averaging the corresponding microstress

component as shown below:

c b a

{aM} -alc f f (41)

z=Oy=Ox=O

Then from Eqns. (40) and (41), we can compute the macroscale CTE's as:

{ac} = _bc [cM]-I {I} (42)

where {I} is given by the expression:

C

1I} = f

b a

z=Oy=Ox=O

(43)

3.2 Continuum Results using SAM

A code calledltTEz-20 (pronounced as microtech) was written in FORTRAN 77 to

implement SAM. The code was executed to estimate the thermo-elastic constants for the

seven examples, whose constituent material properties are listed in Table 1. Input to the code

were the unit-cell dimensions, yam geometry information, constituent material properties,
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and the number of divisions required to discretize the unit-cell in the x, y and z directions.

The element stiffness matrix [C] was determined by computing the elasticity matrix for the

material point at the geometric center of the element, and transforming it to the unit-cell

coordinate system. The predicted macroscale stiffness matrix [cM], and consequently the

macroscale compliance matrix will not be symmetric due to the approximate nature of the

analysis. Therefore the macroscale compliance matrix was made symmetric by averaging

the off-diagonal compliance coefficients. The macroscale elastic constants were computed

by comparing the symmetrized compliance coefficients with that of a homogenous,

orthotropic medium. The user manual for/_TE%-20 is provided in Appendix-A.

The results for a bimaterial medium (example 2) are given in Table 15. The results

for example 1 are not listed, since it is obvious that SAM would predict the elastic constants

for an isotropic medium exactly. The bimaterial medium consisted of two different layers

of isotropic materials of equal thickness altematingly stacked in the z-direction. The elastic

constants for the bimaterial medium were compared with an exact solution (derivation

explained in Section 2.1.3), and with the previously computed finite element results. It can

be observed that SAM marginally under-predicts the longitudinal and transverse Young's

moduli, while the inplane and transverse shear moduli are exact.

Table 15.

Example 2
(bimaterial

medium)

Continuum properties for example 2 using SAM.

t_TEz-20

(SAM)

gTEz-IO

(FEA)

exact

solution

ex, ey ez Cxz, Cxy ,,xz, Vxy
(GPa) (GPa) Gyz (GPa) Vyz

(GPa)

36.02 8.72 2.48 15.23 0.599 0.183

36.79 9.79 2.48 15.23 0.312 0.208

36.79 9.79 2.48 15.23 0.312 0.208

axC ay c az C

X x

10-6/°C 10-6/°C

3.88 52.20

8.19 59.60

8.19 59.60
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Table 16 presents the SAM results for two cases of unidirectional composite

(examples 3 and 4). The fiber and matrix had identical Poisson's ratio in example 3, and

different Poisson's ratio in example 4. The SAM results were compared with the finite

element results from the previous chapter, and with analytical solutions for unidirectional

composite properties. The analytical expressions used were the rule of mixtures formulae

for EL and VLT and the Halpin-Tsai equations (Halpin and Tsai, 1969) for E T, GLT and vzT.

All of the unidirectional composite thermo-elastic constants but for ET and aT were found

to match well with the compared data. Table 17 compares the SAM results for three textile

composites (examples 5, 6 and 7) with available results. In all three cases the thermo-elastic

constants obtained by implementing SAM were in good agreement with the available results.

Table 16.

Example 3

(unidirect.

composite)

Example 4

(unidirect.

composite)

Continuum properties for examples 3 and 4 using SAM.

EL ET GLT GTT VLT VTT

(GPa) (GPa) (GPa) (GPa)

It TE_-20

(SAM)

IuTEz- I O

(FEA)

rule of

mixt./

Halpin-

Tsai eqns.

/_TEz-20

(SAM)

pTEz-10

(FEA)

rule of

mixt./

Halpin-

Tsai eqns.

64 50.24 10.45 8.36 0.341 0.300

63.55 36.48 12.93 9.94 0.300 0.232

64 34.55 11.26 13.29 0.300 0.300

43.35 32.47 4.13 3.04 0.245 0.218

43.12 18.15 5.59 3.92 0.242 0.222

43.40 14.79 4.45 5.91 0.260 0.252

_L _T

x xl0_6/oc
10-6 pC

12.41 21.51

15.74 40.79

15.63 55.11

7.40 11.60

7.40 25.44

6.77 34.24
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Table 17. Continuum properties for examples 5, 6 and 7 using SAM.

Ex, Ey Ez Gxz, Gxy Vxz, Vxy

(GPa) (GPa) Gyz (GPa) Vyz
(GPa)

Example 5

(plain-

weave)

#TEz-20 12.46 6.62 1.64 1.67 0.399 0.162

(SAM)

I_TEz-IO 11.81 6.14 1.84 2.15 0.408 0.181

(FEA)

Dasgupta 14.38 6.25 1.94 3.94 0.463 0.167

results

Example 6

(plain-

weave)

I_TEz-20 63.41 11.13 3.79 4.24 0.402 0.027

(SAM)

IzTEz-IO 53.61 10.88 4.41 4.72 0.365 0.128

(FEA)

TEXCAD 64.38 11.49 5.64 4.87 0.396 0.027

Example 7

(5-harness

weave)

_TEz-20 69.30 11.62 4.06 4.73 0.355 0.031

(SAM)

pTEz-10 64.51 11.33 4.45 4.85 0.329 0.047

(FEA)

TEXCAD 66.33 11.51 4.93 4.89 0.342 0.034

axC, ayCx azCx

10--6/°C 10-6/°C

29.10 68.48

28.36 79.57

22.50 86.00

1.36 21.53

1.56 22.71

1.33 20.71

1.21 20.25

1.55 22.03

1.46 21.24

3.3 Selective Averaging Method (SAM) for Plate Properties

In this section, the SAM procedure to compute the plate stiffness coefficients and

plate thermal coefficients (for a thin textile composite) is described. To distinguish between

the macrolevel, mesolevel and microlevel [A], [B] and [D] matrices, an over-tilde is used to

denote the mesolevel stiffness, and a superscript "M" is used to denote the macrolevel plate

stiffness. However in the remaining sections, [A], [B] and [D] (without a superscript or

overscript) will refer to the macroscale plate stiffness matrices. Also in this section, the
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completeplatestiffnessmatrixon themacroscale,asdefinedby Eqn.(23)will bedenoted

by [cM], suchthat:

(44)

The procedure to find the plate stiffness and thermal coefficients is analogous to that

used to find the continuum thermo-elastic constants. To find the first column of the effective

plate stiffness matrix, the unit-cell is discretized into slices (mesolevel) and elements

(microlevel) as shown in Fig. 20. The unit-cell is subject to the deformation given by e_=l.

The following assumptions are made regarding the midplane strains and curvatures on the

macrolevel, mesolevel and microlevel:

M ~ =- 0
/_i0 = _i0 = _i0 i=2,3

(45)
i=1,3

It is also assumed that the non-zero strain component exO, and the force resultant Nx are

uniform within the mesoscale and macroscale respectively. These two assumptions can be

expressed as the following equations:

(46)

The mesolevel stiffness coefficient A 11can then be obtained by averaging the corresponding

element stiffness coefficients over the slice (consequence of the isostrain assumption) as:

c b

'IfAll(X ) = _- Qll(X,y,z) dy dz

z=0y=0

(47)

where Q11 is the plane-stress stiffness coefficient in the classical lamination theory (Agarwal

and Broutman, 1990), which has been transformed to the unit-cell's xyz-coordinates (for an
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isotropicmaterial,Q 11 -- E
(1 - v 2) )" The macroscale force and moment resultants can be

expressed in terms of the microscale stresses by the following relations:

c b a

f
z=Oy=Ox=O

c b a

M =- fffzo  x y z
z=Oy=Ox=O

i= 1,2,3 (48)

The assumption of uniform force resultants on the macroscale and Eqn. (48) yields the

following expressions for the first column of plate stiffness coefficients:

a

1 _I I I dx
A M a _i I(X)

x=O

(49)

c b a

ciM = I"_" If I AM Qil(x'Y'z) dx dy dz (i = 1,2,3) (50)
ab ,_ll(X )

z=Oy=Ox=O

c b a

c_M_ 1 f f f AM (i= 1,2,3)- a-"b z _ Qil(x,y,z) dx dy dz j = i + 3 (51)
l l(x)

z=Oy=Ox=O

A similar procedure is followed to compute the second column of the effective plate stiffness

matrix.

In the case of shear loading _M = 1, the unit-cell is discretized into slices parallel

to the yz-plane. The assumptions of isostrain and uniform force resultants are reversed from

the case of normal loading. The force resultant Nxy is assumed to be uniform within a slice,

such that

= (52)
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It is also assumed that Yxy is the only non-zero deformation component on the macrolevel,

mesolevel and microlevel. Averaging the element compliance coefficients over the slice, we

obtain:

b a

1lff 1
Q33(z) ab Q33 (x, y, z)

y=0x=0

The mesolevel stiffnesses are then averaged over the volume of the unit-cell to yield the third

column of the plate stiffness matrix, as follows

c b a

   =lfffQi  x,y,z ab Q33(x, y, z)

z=Oy=Ox=O

c b a

fffz Qi3(x, y, z)

Q33(x,y,z)

Q33(z) dx dy dz (i = 1, 2, 3) (54)

a33(z) dx dy dz (i = 1, 2, 3)j = i + 3 (55)

z=Oy=O

The moment resultant Mx is assumed to be uniform on the mesoscale such that MxM = AT/x.

By averaging the slice compliance coefficients over the unit-cell volume, we get the

following relations for the fourth column of the plate stiffness matrix:

(56)affDll(X) = _" Z2Qll(X,y,z) dy dz

z=Oy=Ox=O

The expressions for the fourth, fifth and sixth columns of the plate stiffness matrix

can be obtained in a similar fashion to that explained above, except that the one of the

curvature component will be non-zero instead of a midplane strain component. For example,

to determine the fourth column, _x will be the only non-zero deformation on the macroscale,

mesoscale and microscale. Assuming that the curvature is uniform within a slice, we get

Xx = _x. Then by averaging the element stiffness coefficients over the slice, we obtain an

expression analogous to Eqn. (47) as:

c b
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a

1 _1 I .1 dx
DM1 a bll(X)

x=O

(57)

c b a

- a--b ._ z fill 'x'
z=Oy=Ox=O

Qil(x,y,z) dx dy dz (i = 1,2,3) (58)

c b a

_4=1 fffz=o_/911( x)- Qil(x,y,z) dxdydz (i =1,2,3)j= i + 3 (59)

z=Oy=Ox=O

The fifth and sixth columns of the plate stiffness matrix can be found by using a similar

procedure.

To find the plate thermal coefficients, eio and x_ are assumed as zero in the

macrolevel, mesolevel and microlevel. The thermal stresses developed in the microscale due

to a uniform temperature difference ofA T=To are given by:

{a} = - [Q]{a}T O (60)

where

{ox}Cry {a} = ay{a} = rxy

The macroscale plate constitutive equation will reduce to

(61)

(62)

By averaging the microscale stresses given by Eqn. (60) over the unit-cell volume (using

Eqn. 48), and equating to the macroscale force and moment resultants in Eqn. (62), we get

the following relations for the plate CTE's:

tiP = [cM] - I 12 (63)



60

where 11 and 12 are integrals given by the expressions:

c b a

 fff11 = _-_ [Q]{a} dx dy dz

z=Oy=Ox=O

12

c b a

:±fffab z [Q] {a } dx dy dz

z=Oy=Ox=O
1

(64)

3.4 Plate Results using SAM

The plate coefficients and plate CTE's were computed for examples 2-7 by

implementing SAM, and compared with the finite element results presented in the previous

chapter. The computed coefficients for the examples are listed in Tables. 18-20. The

properties for the bimaterial plate were predicted very accurately (Table 18). For the

unidirectional composite examples, SAM was able to predict the [A] matrix coefficients

(except for A66 ), Dll, and the plate CTE's very well (Table 19). However SAM grossly

over-predicted D12 and D22 and under-predicted the coefficient D66. For the textile

composite examples (Table 20) SAM predicted all but A12 and D12 with very good accuracy.
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Table 18. Non-zero [A], [B] and [D] coefficients for example 2 (bimaterial plate) using

SAM.

MTEx-20

(SAM)

MTEx-IO

(FEA)

lamination theory

for two plies

lamination theory

using 3-D elastic

constants

All, A22

xl06

9.844

9.832

9.832

9.844

A/2

xl06

2.045

2.043

2.043

2.048

A66

xl06

3.899

3.895

3.895

3.899

Bll, B22

xlO 3

- 0.565

- 0.563

- 0.563

0

B/2

xlO 3

- 0.108

- 0.108

- 0.108

0

B66

x10-3

- 0.228

- 0.228

- 0.228

0

Dll, 022 912 966 axP ayP fix p flyP

x10-3 x10-3 x10-3 xl0 -6/oc /OC/m

MTEz-20 53.727 11.163 21.282 17.828 0.170

(SAM)

IzTEz-IO 53.590 11.149 21.220 17.800 0.170

(FEA)

lamination theory 53.573 11.131 21.220 17.814 0.170

for two plies

lamination theory 53.762 11.183 21.293 8.190 0

using 3-D elastic
constants

Note: [A], [B] and [D] coefficients in SI mits
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Table 19. Non-zero [A], [B] and [D] coefficients for examples 3 and 4 (unidirectional

composite) using SAM.

All

xl06

A12

xl06

A22

xl06

A66

xl0 6

Example 3 ltTEz-20 0.688 0.175 0.475 0.102
(SAM)

IuTEz-IO 0.690 0.149 0.496 0.177

(FEA)

0.673 0.109 0.363 0.113Halpin-Tsai Eqns.
and lamination

theory

Example 4 0.443

0.452

0.444

lt TEz-20
(SAM)

0.074

0.062

0.039

t,tTEz-IO
(FEA)

0.261

0.285

0.151Halpin-Tsai Eqns.
and lamination

theory

0.040

0.114

0.045

Example 3

Example 4

It TEz-20
(SAM)

921 1)12

x10-6 x10-6

3.750 1.029

ItTEz-IO 3.589
(FIEA)

5.606Halpin-Tsai

Eqns. and
lamination

theory

Iz TEz-20
(sAM)

0.596

0.908

2.308 0.446

ItTEz-IO 2.256
(FEA)

3.702Halpin-Tsai

Eqns. and
lamination

theory

0.224

0.328

922

x10-6

D66

x10-6

axPX

10-6

ayPx

lO-6

3.112 0.541 14.476 24.750

1.980 0.947 15.489 26.184

3.026 0.939 15.625 55.112

1.799 0.195 6.628 13.076

0.873 0.568 7.378 13.188

1.262 0.371 6.774 34.239

Note: [A], [B] and [D] coefficients in SI units
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Table20. Non-zero [A], [B] and [D] coefficients for examples 5, 6 and 7 using SAM.

Example 5 I_TEz-20 (SAM)

ItTEz-10 (FEA)

lamination theory

using 3-D constants

.411, A22

x 106

2.667

2.681

2.783

A12

x 106

0.446

0.565

0.503

A66

x 106

0.379

0.489

0.490

n/1
xl03

0

0

0

Example 6 ItTEz-20 (SAM) 12.215 0.577 1.095 0

I_TEz-10 (FEA) 12.090 3.470 1.223 0

lamination theory 13.938 1.787 1.208 0

using 3-D constants

Example 7 /t TEz-20 (SAM) 16.039 0.631 1.209 0.590*

/z TEz-10 (FEA) 14.683 1.351 1.210 0.495*

lamination theory 16.531 0.770 1.239 0

using 3-D constants

Example 5 /_TEz-20 (SAM)

Dll, 922
x 10-3

6.017

D/2
x 10-3

D66
x 10- 3

axp, ayP
x 10-6/°C

fix p

/°C/m

/t TEz-10 (FEA) 5.687

lamination theory 12.054 2.177 2.124 28.363 0
using 3-D
constants

Example 6 ItTEz-20 (SAM) 44.782 2.733 4.398 1.984 0

/.tTEz-10 (FEA) 41.695 0.373 5.879 1.480 0

lamination theory 75.942 9.734 6.582 1.556 0
using 3-D
constants

Example 7 _TEz-20 (SAM) 81.164 3.307 5.868 2.422 -0.028*

/t TEz-10 (FEA) 90.072 1.123 6.149 2.910 -0.037*

lamination theory 87.283 4.195 6.753 1.550 0

using 3-D
constants

* In example 7, B22 = -Bll and flyP = --fixp

Note: [A], [B] and [D] coefficients in SI units

1.590 1.360 27.505 0

1.518 1.577 27.465 0



CHAPTER4
FINITE ELEMENTMODELSFORSTRENGTHPROPERTIES

In Chapter2, we haddemonstratedfinite elementproceduresto modela general

textilecompositeeitherasathree-dimensional(continuum)materialorasathinplate/beam

to predicttheircorrespondingthermo-mechanicalcoefficients.Inthischapter,weextendthe

samenumericalmodelsto computethethermalresidualstressesdueto processingin the

yamsandthematrix.Thenthenumericalmodelsareusedto studythestrengthbehaviorof

thecompositeby predictingthefailureenvelopesfor thinandthick textilecomposites.

4.1 Thermally Induced Residual Microstresses

The thermal residual microstresses are induced in the yam and matrix materials due

to the mismatch in their corresponding CTE's. The difference between the composite curing

temperature and room temperature then serves as the driving force to create these

microstresses. Since composites designed for high temperature applications are fabricated

at higher temperatures, the residual microstresses become relevant in the strength

considerations of such composites. The residual microstresses in the vicinity of the

yam-matrix interface are particularly important as they could lead to failure due to

debonding.

Determination of residual microstresses. Let To be the difference between room

temperature and the composite fabrication temperature. Since the composite is stress free at

the fabrication temperature, which is above room temperature, To is generally negative. The

residual microstresses in the yam and the matrix are obtained by superposing the

microstresses due to the two load cases as explained below. In the first load case, the unit-cell

64
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is constrainedfromexpandingby fixing thecomernodesof theunit-cellandenforcingzero

displacementdifferencebetweencorrespondingnodeson oppositefacesof theunit-cell

(periodicdisplacementBC's).A temperaturedifferenceTo is applied to all elements in the

finite element model. This is exactly the same problem we solve for finding the

three-dimensional (continuum) CTE's. The applied boundary conditions mean that all the

macrostrain components are equal to zero ( {e M} = O, A TM = To). Then the corresponding

macrostresses required to restrain the unit-cell expansion are given by:

{t7 M} = --[C]{aC}To (65)

In the second load case, deformations are applied so as to reverse ihe macrostresses

developed in the first load case. This can be accomplished by imposing the deformations

{e M} = {a c} To andA TM=o. It can be noted that the macrostresses developed in the second

loading case, given by [C] {a c} To are equal and opposite to the macrostresses in Eqn. (65).

The microstresses from both load cases are superposed to obtain the residual stresses due to

free thermal expansion.

The same idea can be extended to finding the residual microstresses in the plate

model. Then the deformations to be applied in the first load case are {eM } = 0, {zM} = 0 and

ZI T M = To; and the deformations in the second load case are {e_} = {ap} TO, {_M} = {tip}

To andA TM = 0. The residual microstresses were computed for the plain-weave textile beam

at the Gaussian center of the elements in the unit-cell. The beam was assumed to be in the

x-z plane with unit-cells repeating in the x-direction. Figure 21 shows the thermal stress

contours for trxx, azz and "rxz. The composite curing temperature was assumed to be 150°C

above room temperature.
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(a)

1.8E-3

1.6E-3

1.4-E-3

1.3E-3

. 1 .IE-3

9.0E-4,

7.2E-4

5.4-E-4.

3.BE-4-

1.8E-4

0
0 6.0E-4 1.2E-3 1.8E-3 2.4E-3 3.0E-3 3.6 -3

(b)

1.8E-3

1.6E-3

1.4E-3

1.3E-3

1.1E-3

9.0E-4

7.2E-4

5.4E-4

3.6E-4

1.8E-4

0
0

7\\T\\' '

6.0E-4 I .2E-3 1.8E-3 2.4E-3 3.0E-3 3.6E-3

(c)

1.8E-3

1.6E-3

1.4E-3

1.3E-3

1.1 E-3

9.0E-4

7.2E-4

5.4E-4

3.6E-4

1.8E-4

0
0 6.0E-4 1.2E-3 1.8E-3 2.4E-3 3.0E-3 3.6E-3

Figure 21. Thermal stress contours in a plain-weave beam forA T=-150°C.

(a) axx; (b) azz; (c) rxz.
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4.2 Strength Modeling of Textile Composites

There are many failure criteria or strength theories for unidirectional fiber

composites. This, for example, includes maximum stress theory, maximum strain theory and

Tsai-Hill theory (Agarwal and Broutman, 1990). Even though failure of a material is a very

complex phenomenon, engineering strength theories such as mentioned above have been

found to be useful in design. The interpretation of strength values obtained from such

theories are different for different materials. For example in metal matrix composites the

failure envelope obtained using the above theories will correspond to the initial yield surface

(Dvorak et al., 1973). In graphite/epoxy composites the failure theories can be used to predict

fiber or matrix failure. In the present study our intent is to explore the possibility of

developing such failure criteria for textile composites.

4.2.1 Determination of Composite Failure Envelope

Our approach is similar to that used by Dvorak et al. (1973). A state of homogeneous

deformation, corresponding to each of the six macrostrain components, are independently

applied to the unit-cell by imposing the boundary conditions explained in Section 2.1. For

each case, the various stress components are computed in the elements in the

unit-cell--typically at the element Gaussian integration points. These stresses will be

referred to as microstresses. Assuming linear elastic behavior, the microstresses can be

computed for any arbitrary combination of the macrostrain components. Since we know the

macroscale elasticity matrix, we can find a relation between microstresses at a point and any

arbitrary state of macrostress as:

{a} = [F] {_M} (66)

[F] can be considered as a matrix of influence coefficients, which is evaluated at the

integration points of all the elements in the unit-cell. We also assume that the failure behavior
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of the matrix material and the yam is known. For instance, let the failure criterion of the

matrix be of the form [H] {_r}matrix = 1. Then the failure criterion for the composite is

obtained from Eqn. (66) as [H] [F] {a M} - 1. The same idea also applies for the yarn. The

textile composite is assumed to have failed if there is failure on the microscale in any one

of the constituent materials---either matrix or the yam. By varying the macrostresses using

a numerical simulation, failure envelopes can be obtained for the idealized homogeneous

material (Fig. 22a). It might be noted that Eqn. (66) can be modified to include the thermal

residual stress field in the unit-cell as

{tr} = [F] {a M} -{trr}To (67)

where {aT } is the matrix of thermal microstresses computed at the element integration point

for a unit temperature difference.

(a) o'_ (b) Ny

Nx

Figure 22. Composite failure envelopes.

(a) continuum failure envelope in the space of macrostresses;

(b) plate failure envelope in the space of force and moment resultants.
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4.2.2 Effect of Stress Gradients on Strength

The strength analysis for a three-dimensional composite can be extended for thin

composites using the plate model. As mentioned in Section 2.2, the macrostresses will not

be homogeneous thorough the thickness in such composites. Then the composite failure will

be determined by the stress gradients through the thickness, represented by the averaged

force resultants (N) and moment resultants (M). The composite failure criterion for the plate

model will be of the form:

Thus the failure envelope of the composite will be in the six-dimensional space of the force

resultants and the moment resultants (Fig. 22b). The above procedure was demonstrated

using the beam model, for the case of a plain-weave textile composite.

Failure envelope for textile composite beam. For a textile composite beam, the

failure envelope is constructed in the space of the three force resultants P, M and V. The textile

composite beam is assumed to be in the xz-plane with unit-cells repeating in the x-direction.

The unit-cell is discretized with eight-node isoparametric plane strain finite elements. Three

linearly independent deformations, as explained in Section 2.3, are applied to the unit-cell:

(a) unit axial strain; (b) unit curvature such that transverse shear strain is zero; (c) unit

transverse shear strain. For each deformation, from the finite element results, the

microstresses _rxx, azz and _'xz are computed at the Gaussian center of each element. The

microstresses in the t_h element for a combination of loads (deformations) are given by:

_cr_ : [Ai, l_tM t

(69)
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wheretheeachcolumnof [A/] corresponds to the microstresses for unit deformation. For

example, the first column of [A/] represents the three microstress components in the z_h

element for unit e M. We also know that

_I = [S] (70)

where [S] is the beam compliance matrix. From Eqns. (69) and (70) we arrive at an

expression analogous to Eqn. (66):

_a_ = [F] (71)

where [F] = [Ai][s]. The composite is assumed to have failed if there is failure in any one

of the finite elements in the unit-cell. Matrix failure is determined by either maximum

principal stress or von Mises criteria. Since the yam is assumed to be transversely isotropic,

yam failure is determined by either maximum strain theory for a unidirectional composite

or the Tsai-Wu criteria.

Beam Failure Envelope Results. The strength properties used for the constituent

materials in the beam are as follows:

Yam: crLT=1725 MPa, aLC=1366 MPa, oTT=42 MPa, aTC=230 MPa, rLT=95 MPa

Matrix: crT=70 MPa, crC=100 MPa

where the superscripts' T' and' C' refer to the tensile and compressive strengths respectively.

The failure envelopes were developed using two different sets of failure criteria. In the first

case maximum principal stress criterion was used to determine the matrix failure and the

maximum strain theory for unidirectional fiber composite was used for the yam. In the

second case von Mises criterion was used for the matrix and the Tsai-Wu criteria for the yam.

Both structural (beam) and continuum failure envelopes were developed. As was explained
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earlier,in thebeammodel,periodicBC'swereimposedbetweencorrespondingnodeson

theleft andrightendsof theunit-cell. In thecontinuummodel,theperiodicBC's werein

additionimposedbetweenthetopandbottomsurfaces.ThefailureenvelopesinFigures(23)

through(26)wereobtainedusingthefirst setof failurecriteria.Figures(23)and(24)depict

the structural failure envelopein the P-M space based on yarn and matrix failure

respectively. Figures (25) and (26) illustrate similar continuum failure envelopes in the space

of the macroscale normal stresses in the x- and z-directions. As expected, the envelope

reduced in size with increasing shear force resultant. If we assume that the beam is made of

a homogeneous but orthotropic material with properties as predicted by the continuum

model, then one can derive structural failure envelopes from the continuum failure envelopes

using simple beam theories. The derived structural failure envelopes are compared with that

obtained from direct micromechanical analyses in Figures (27) and (28). One can note that

the continuum failure criteria are very conservative for the case of a thin beam. Figures (29)

and (30) show similar comparisons for the second set of results obtained using the quadratic

failure criteria for the constituent materials.
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Figure 25.
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Figure 27.
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Figure 29.
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CHAPTER 5

ISSUES IN MICROMECHANICAL MODELING

The complex yam architectures in textile composites make traditional finite element

modeling very difficult. Traditional finite element models assume that the material

properties are constant or vary smoothly within an element. In the context of textile

composites, it means that the yam and matrix materials are modeled by separate elements,

with common nodes at the yam-matrix interface. This is indeed preferable because the

stresses at the interface can be computed accurately. However meshing the interstitial matrix

region becomes time-consuming and difficult. This region which is essentially a collection

of multiply-connected matrix pockets, requires a very fine mesh to capture the pocket

geometry. Dasgupta et al. (1990) and Whitcomb (1991) presented detailed finite element

analyses of the unit-cell for plain-weave architectures. In this chapter, alternative finite

element modeling techniques (Marrey and Sankar, 1994) are discussed, which are valid for

any yam architecture. The methods were tested with simple two-dimensional examples, and

compared with the displacement fields using traditional finite elements. Some aspects of

finite element mesh generation, in the context of textile composites, are also discussed.

5.1 Finite Element Modeling of the Unit-Cell

Traditional finite elements use homogeneous elements, i.e., elements that are

comprised of only one material. Two methods to circumvent traditional finite element

modeling are described in the following section. The first uses incompatible elements, which

employs homogeneous elements for the yam and matrix, though there is a node mismatch

at the yarn-matrix interface. The second method utilizes inhomogeneous elements to model

the unit-cell.
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5.1.1 Incompatible Elements

The following method is a modification of previously published work on

independently modeling substructures with finite elements (Ransom et al., 1993). The

matrix and each of the yams are meshed independently with finite elements. In general, the

nodes on the surface of the yarns will not coincide with the matrix nodes on the yarn-matrix

interface. In fact, most textile composite unit-cells due to multidirectional reinforcements,

contain multiply-connected matrix pockets. These matrix regions require an extremely fine

mesh to capture their geometry, whereas the yams can be modeled with a coarse mesh. This

method has therefore two advantages--the first being the relative ease of generating

independent meshes for the yams and the matrix. Secondly, the effective degrees of freedom

in the numerical model are reduced, since the yarns are modeled with a coarse mesh.

Figure 31(a) shows an example of a rectangular unit-cell with an ellipsoidal

inclusion. The matrix mesh is shown in Fig. 31 (b) and the inclusion mesh is shown in Fig.

31 (c). The matrix degrees of freedom on the inclusion-matrix interface are denoted as qb m;

the matrix degrees of freedom in the interior as qi m and the inclusion degrees of freedom are

denoted as qY. The total strain energy in the unit-cell is given by

U = 1 [qr_ qmJ [K_b K_bi]fqrl
[K_ /_///j _qm j (72)

+ l qYrgYq y - q yrey - qmTR7 - qb-mrDmixb

where KY is the finite element stiffness for the inclusion; and K m is the stiffness for the matrix

material, which is divided into four sub-matrices. RY and R m are the external load vectors in

the inclusion and matrix mesh respectively. The matrix degrees of freedom on the boundary

are eliminated using the transformation,

qn_ = Zqy (73)

where Tis a transformation matrix. By substituting for qb m in Eqn. (72) and minimizing the

strain energy with respect to qY and qi m, we get the following relation:
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""<{4I"+ T KbbT T m qy = y + TTR._I

g_bZ gi m ] i em J

(74)

Matrix

q.m
l QY

Figure 31. Example to illustrate incompatible elements.

(a) problem to be modeled; (b) matrix mesh; (c) inclusion mesh.

Equation (74) can be solved for qY and qi m, and qb m can be recovered from Eqn. (73). The

displacement at any point in the unit-cell is obtained by identifying the inclusion or matrix
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elementenclosingthepoint,andinterpolatingthenodaldisplacementsof thatelement.By

repeatingthisprocedurefor severalrepresentativepoints,thedisplacementfield within the

unit-cell isobtained.

Themethodwasfirst testedby predictingthedisplacementfield for theunit-cellof

aunidirectionalcompositesubjecttouniaxialtension.Duetosymmetryoftheunit-cell,only

one-quarterof theunit-cellwasmodeled.Theboundaryconditionsimposedrequiredthe

edgesof theunit-cellto remainstraightafterdeformation(Fig. 32a).Theinitial meshfor

theproblemisshowninFig.32(b).Thenodemismatchattheinclusion-matrixinterfacecan

beobservedin thefigure.Eight-nodeisoparametricelementswereusedto modelthefiber

andmatrix--24 elementswereusedfor the fiber and98 elementsfor the matrix. The

deformedincompatibleelementconfigurationis shownin Fig. 32(c).Theresultswere

comparedwith conventionalfinite elementresultsby plottingthedisplacementfields for

bothcaseson abackground25x25mesh(Fig. 32d). It wasfoundthatthe incompatible

elementdisplacementfield wasidenticaltothatusingtraditionalelements.Onlyonesetof

displacementsarevisibleinFig. 32(d),becausethedisplacementfieldsexactlyoverlapped

eachother.

Theproceduretodeterminethebackgroundmeshdisplacementfieldis illustratedin

Fig.33.Foragivenpointin thebackgroundmesh(Fig.33a),thecorrespondingincompatible

elementcontainingthepointis determined(Fig.33b).Thedisplacementfor themeshpoint

is obtainedastheinterpolationof nodaldisplacementsof thefoundincompatibleelement

(Fig.33c).A similarprocedureis followedtocomputethebackgroundmeshdisplacements

usingconventionalelements.Themethodwasalsotestedby modelingthetransverseshear

of aunidirectionalcomposite(Fig.34).In thiscase,one-halfof theunit-cellwasmodeled

andthedisplacementsareshownfor abackground20x20mesh.In bothexamples,it was

foundthatthedisplacementfieldsusingincompatibleelementsandconventionalelements

wereidentical.A discontinuityin strainsin thevicinity of thefiber-matrixinterfacewas

observedin boththeexamples.
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Figure 32. Unidirectional composite subjected to uniaxial tension.

(a) boundary conditions; (b) initial mesh using incompatible elements;

(c) deformed mesh; (e) deformed background mesh.
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Figure 33. Calculating displacement field for the background mesh.

(a) background mesh showing node whose displacements are to be

calculated; (b) incompatible element mesh; (c) matrix element

containing the background mesh node.
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Figure 34. Unidirectional composite subjected to transverse shear.

(a) boundary conditions; (b) initial mesh using incompatible elements;

(c) deformed mesh; (e) deformed background mesh.
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5.1.2 Inhomogeneous Elements (Averaged Gaussian Integration)

By inhomogeneous elements, we mean finite elements which are comprised of more

than one material. Inhomogeneous elements in micromechanical analyses were studied in

detail by Foye (1993). The advantage of using inhomogeneous elements is that mesh

generation is very simple. For instance a rectangular domain can be discretized into uniform

rectangular or triangular elements, without taking into consideration the constituent material

geometry. The stiffness matrix of inhomogeneous elements represent smeared properties of

the constituent phases determined by the numerical integration scheme. Thus the solution

will be approximate in the interface regions. Foye has developed a modified method to

evaluate the stiffness matrix of inhomogeneous elements called Replacement Elements,

which predict better stresses than conventional inhomogeneous elements. The following

details the procedure to use inhomogeneous elements for micromechanical analysis.

The unit-cell is divided into uniform rectangular hexahedral elements as shown in

Fig. 35. In general these elements will be inhomogeneous. The stiffness matrix (K e) for an

inhomogeneous element is formulated as:

e

Iv, BTCB dVe

+1 +1 +1

=fff
-1 -1 -1

N N N

= 222
i=lj=lk=l

BTCB IJI d_drld_ (75)

WiWjW k BTc(_,rI,_) BIJ1

where lx is the domain of the element, B is the strain-displacement transformation matrix,

C is the elasticity matrix, N is the number of Gauss points used for integration, W is the

Gaussian integration weight factor and IJI is the determinant of the Jacobian. The material

property at each Gauss point (_,r/,_) is determined, and the corresponding elasticity matrix
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is usedto performthevolumeintegration.Theelementstiffnessmatrixwill thusrepresent

theaveragedpropertiesof theconstituentmaterialsin thatelement.

(a)

Matrix

@

(b)

..............i_ _£N!_ !!

_ ii i_ '

(c)

Figure 35. Discretizing a domain using inhomogeneous finite elements.

(a) problem to be modeled; (b) inhomogeneous finite element mesh;

(c) inhomogeneous finite element.
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Theapproachwasimplementedby writing acodeto identify thematerialproperty

of anarbitraryGausspoint.Theinclusiongeometrywasdefinedby acoarsefinite element

mesh.If theGausspointfell withinanyof theinclusionelements--thematerialpropertyof

thepointwasidentifiedasthatof inclusion.Otherwisethematerialpropertyof thepointwas

identifiedasmatrix.Thealgorithmto determinetheelementbelongingto theGausspoint

is explainedin the following section.The resultsobtainedby usingthe approachto the

uniaxialtensionof aunidirectionalcompositeareshownin Fig. 36(a).Thedisplacements

werein agreementwith thoseobtainedusinghomogeneouselements(Fig.36b).

Theproblemwith inhomogeneouselementsis thattheycannotrepresentthejump

in strainsthatcanoccurattheyam-matrixinterface.Infacttherearethreestraincomponents

thatcanbediscontinuousattheinterface,butthecorrespondingstressesmustbecontinuous.

Such a behaviorcannotbe representedby inhomogeneouselementswhich assumea

continuousstrainfieldswithin theelement.Thisproblemcanberesolvedby decomposing

thedisplacementfield into two parts:a displacementfield ql that produces a strain field

continuous everywhere in the unit-cell, and the second one q2 that has a strain discontinuity

at the yam-matrix interface. The field q2 can be assumed to be such that the displacements

are identically equal to zero everywhere in the matrix and at the interface, and exist only in

the interior of the inclusions. Thus one can use inhomogeneous elements for solving the first

set of displacements. The second set of displacements exists only in the inclusions, and they

can be solved by discretizing only the inclusion. However the issue is determining the

decomposition q=ql+q2. The condition for the decomposition is that the jump in interfacial

stresses should be equal and opposite in the two problems, since the interfacial stresses are

continuous in the given problem.
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Figure 36. Displacement field for uniaxial tension of a unidirectional composite.

(a) inhomogeneous elements; (b) homogeneous elements.
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Point location algorithm. In the context of a textile composite problem, the material

property code of a point is obtained as follows. The yam (inclusion) volume is discretized

into eight-node hexahedral isoparametric finite elements as shown in Fig. 37. The finite

elements are shaped as triangular prisms (a face of the hexahedron is collapsed to an edge).

An iterative algorithm is used to determine whether the point (whose material property is

to be determined) is contained within the volume of a given element. If not, the procedure

is repeated for all the elements in the yam. If the point does not belong to any of the yams,

it is designated as a matrix point. If the point belongs to a yarn element, the local yam

direction is computed as the direction of the line along the length of the prismatic element.

Figure 37. Finite element mesh for a yam.

The algorithm to determine if a given point is contained within the volume of a finite

element is explained below. The procedure is explained for the two-dimensional case, and

can be easily extended to a three-dimensional problem.
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P

(a) //'TII (b)

Y I_ Ay

Figure 38. Finite element in:

(a) xy--coordinate system (b) natural coordinate system.

Let the point, whose material property is to be determined, be P with coordinates (x,y). It

is required to determine whether the point P is contained within the area of the eight-node

isoparametric element as shown in Fig. 38(a). The element is mapped into its natural

coordinate system (Fig. 38b). Similarly, point P is mapped to P* in the element natural

coordinate system. The element in the (_,r/) natural coordinate system is a square of length

two units with edges parallel to the _r/-axes, such that the center of the square O* coincides

with the natural coordinate origin. This means that we need to find whether the point P* is

contained within the given square. This is possible if we know the natural coordinates of

point P*. However there does not exist a transformation from the xy-coordinate system to

the natural coordinate system. The reverse transformation exists as given below:
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8

i=I
8

Y(_, t/) ---- _ Ni(_, 7]) Yi
i=l

(76)

where A_ denotes the shape function, and (xi,Yi) represents the xy-coordinates for the i thnode.

Therefore we use an iterative procedure to determine the natural coordinates of P*.

We substitute _=0 and t/=0 in Eqn. (76), and determine the xy-coordinates of point

O (corresponding to point O* in the natural coordinate system). The point O will not, in

general, coincide with P. Then the error, i.e., the difference in the x- and y-coordinates

between points P and O is calculated as dx and Ay respectively. Also since the x- and

y-coordinates are functions of the natural coordinates, Ax and Ay may be expressed as:

Ax = OXAl: Ox
o_ " + _At/

Ay=-_A_ + -_At/ (77)

Equation (77) may be rewritten in matrix form as follows:

Ay = Oy Oy At� (78)

Ay = [j(_,t/)lr At/ (79)

where [J(_,t/)] is the Jacobian at (_,t/). The Jacobian is computed using the following

equation:

O_ tg_ " " " 0_ X2 Y2

[s] = ON1 ON2 (80)

'

Knowing the Jacobian, A_ and At/can be evaluated from Eqn. (79) as:
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L

At/ = [J(_'r/)]-r Ay (81)

The parameters A _ and A r/are the corrections to be applied to the coordinates of point O*

to determine the coordinates of point P*. As a check, the natural coordinates of point P* is

then transformed to its xy-coordinates using Eqn. (76), and compared with the given

coordinates of point P. The procedure is repeated if the difference in coordinates is above

a prescribed tolerance.

5.1.3 Periodic Boundary Conditions

The unit-cell is the smallest volume element in the composite which is representative

of the yarn architecture. The yam architecture in the composite is generally periodic, and the

unit-cell contains one repeat of the yam pattern. Thus the composite structure can be formed

by assembling the unit-cell in all three dimensions. When the composite is subject to any

arbitrary load, the microstresses and displacement gradients will be continuous across the

faces of the unit-cell. Continuity of microstresses requires that the tractions be equal and

opposite at corresponding points on opposite faces of the unit-cell. Also the displacements

between corresponding nodes on opposite faces of the unit-cell will differ only by a constant.

Multipoint constraint elements. The periodic boundary conditions (traction and

displacement boundary conditions) can be implemented using multipoint constraint

elements, which are based on the principle of Lagrange multipliers. The finite element

formulation with multipoint constraint elements will be of the form:

where {2} is the matrix of Lagrange multipliers (Cook et al., 1989). However this method

requires large storage for the stiffness matrix, due to the degrees of freedom contributed by

the constraint elements (2i). Also the resulting stiffness matrix will not be positive definite,

and the matrix bandwidth will be very large.
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Figure 39. Two-dimensional example to illustrate the use of transformation equations.

(a) initial finite element mesh of unit-cell showing some of the master

and slave degrees of freedom; (b) deformed mesh.

Transformation equations. The following section explains an alternative method to

enforce the periodic boundary conditions. The method is explained for the two-dimensional

case, and can easily be extended for the three-dimensional problem. Consider a finite

element mesh of a unit-cell (Fig. 39a), where the periodic boundary conditions are to be

implemented between the left and right edges, and the top and bottom edges. Assume that

each node has only one degree of freedom (d.o.f). The nodal degrees of freedom on the left

and bottom edges (except the prescribed d.o.f's) are designated as "master" degrees of

freedom qm, and those on the right and top edges as "slave" degrees of freedom qs. The nodal

degrees of freedom in the mesh interior are also classified as master degrees of freedom.

There may arise a situation where the d.o.f for the comer node at xl=0, x2 = 0 is not

prescribed. In that case, it is designated as a master node with two slave nodes, whose

coordinates are given by (xl=0, x2 = L2) and (xl=L1, x2 = 0). Thus a master d.o.f may have

zero, one or two slave d.o.f's depending on its coordinates.

The slave d.o.f's are transformed to master d.o.f's by the transformation:
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qs = Aqm + Aqs (83)

where A is a transformation matrix such that Aij = _c(/)j' and 6 denotes the Kronecker delta.

"c" is an integer function such that for the i th slave d.o.f, c(i) is the corresponding master

d.o.f. Equation (83) can be rewritten as,

(qs) i = _Aij(qm) j -F (Zlqs)i

J

= 2f_c(i)j(qm)j q" (Aqs)i

J

= (qm)c(O + (Aqs)i

(84)

(A qs)iis the displacement difference to be imposed between the i th slave d.o.f (qs)i and its

corresponding master d.o.f, (qm)c(i)" The strain energy in the unit-cell is evaluated as,

U

l lqmlTrKmm Kms] qm

"2tqsJ kgsm Kss]{ qs}

+ 2T(qs -- Aqm -- Aqs) -- qTRs -- qTRm

(85)

where 2 is the matrix of Lagrange multipliers; Rs and Rm represent the external force vectors

for the slave and master d.o.f's. By minimizing the strain energy with respect to the variables

qm, qs and 2 we get:

[ mm ma  qm {m}Ks A Kss 1 I.lqs}, =I 0JltJ qs

Eliminating qs and 2 from Eqn. (86), we arrive at the expression •

(86)

* _ R*K qm (87)

where

K* = [Kmm + ATKssA + ArKsm + KmsA]

R* = Rm "l- ATRs - [Kms + ArKss]Zlqs
(88)
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Equation (87) can be solved for qm; and qs recovered from Eqn. (83). Thus the number of

unknowns in the linear equation solver are reduced, and also the resulting stiffness matrix

(K*) is positive-definite.

5.2 Mesh Generation

Currently approximate methods such as averaged Gaussian integration, Selective

Averaging Method and Isostrain Method are popular because of their ease of computation

and requirement of minimum computer storage and time. However the advancements in

computer hardware and computational technology will make it possible to use a large

number of degrees of freedom for micromechanical analysis. Then there will be a need for

mesh generation techniques for creating

following we describe two methods for

elements.

homogeneous elements in a unit-cell. In the

discretizing the unit-cell with homogeneous

5.2.1 Node Migration Method

The unit-cell is meshed with tetrahedral solid elements in an arbitrary fashion. This

will be called the primitive mesh. The elements are identified as homogeneous or

inhomogeneous. Then the nodes of the inhomogeneous elements are moved to the interface

by using an heuristic algorithm. In each inhomogeneous element, the node closest to the

interface is allowed to migrate to the interface first. After each cycle, some elements will

transform into homogeneous elements. Then the process is repeated until all the elements

become homogeneous. The mesh thus generated is called the intermediate mesh.

The intermediate mesh will have some elements distorted due to node migration.

This distortion can be removed by subjecting the mesh to an annealing process, by which

the distortions concentrated near the interfaces are distributed among other elements also.

An example of this method is depicted in Fig. 40. The purpose here is to discretize a square

unit-cell containing two circular inclusions. The figure shows the initial mesh containing
J
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uniform square elements, the intermediate mesh of homogeneous elements and the annealed

mesh.

(a)
lifT!
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Figure 40. Example problem for node migration method.

(a) primitive mesh; (b) intermediate mesh; (c) annealed mesh.
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5.2.2 Modified Node Migration Method

In this method an initial mesh is created as in the previous method. The elements are

divided into three groups: homogeneous matrix elements, homogeneous yam elements and

inhomogeneous elements which contain both matrix and yam. Then the inhomogeneous

elements are redesignated as matrix elements, thus leaving only two kinds of elements. We

will call this as the intermediate mesh. Thus the finite element representation of the yam will

be smaller than the actual yarn, i.e., the yam mesh will be fully contained within the actual

yam. Then the nodes on the yam-matrix interface in the intermediate mesh are allowed to

migrate to the nearest point on the actual yam-matrix interface. As before a

three-dimensional finite element program with fictitious material properties is used in this

step to obtain an annealed mesh. An example of the final mesh for a square unit-cell with

two inclusions in the shape of a quarter-circle is shown in Fig. 41.

6

4

2

0 2 4 6 8 10

Figure 41. Annealed mesh using modified node migration method.



CHAPTER6
CONCLUSIONSAND SUGGESTIONSFORFUTUREWORK

Thepreviouschapterspresentedsomeof theaspectsinvolvedin themodelingof

textile structuralcomposites.Micromechanicalanalyseswere developedto predict the

three-dimensionalelasticconstantsandCTE'sfor textilecompositematerials.Theeffectof

stressgradientsin thintextilecompositeswashighlighted,andconsequently,anindependent

micromechanicalanalysiswasdevelopedfor suchcomposites.The issuesinvolved in

modelingathin textile compositeweredemonstratedbyfirst modelingthecompositeasa

beamandthenasa plate.Two codescalledItTEx-IO and ItTEz-20 were developed in

FORTRAN 77, which implemented the finite element procedure presented in Chapter 2, and

the SAM procedure presented in Chapter 3 respectively. The predicted macroscale

thermo-elastic constants compared very well with existing models for textile composite

materials.

The finite element analysis and SAM procedures assume that the unit-cell of the

composite is shaped as a rectangular hexahedron. Both analyses can be easily modified for

other unit-cell geometries. For example, in the finite element procedure, the relations for the

periodic boundary conditions will change based on the unit-cell geometry. However the

assumption, that the unit-cell is rectangular, limited the textile composite examples for

which the above codes can be implemented. For instance, the unit-cell for a braided

composite is hexahedral with the included angle between the edges equal to the braid angle.

The braid angle, in general, will not be equal to a right angle. Thus the effective composite

properties could be computed only for woven architectures, where the unit-cell is a

rectangular hexahedron.

96
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A considerableamountof time was investedin developingmeshgeneration

algorithmsand alternativefinite elementprocedures,in the contextof modelingtextile

composites.Someof theseideasarepresentedinChapter5.Themeshgenerationalgorithms

suchasthe nodemigrationmethodwerevery effectivefor two-dimensionalexamples.

Howeverfor thethree-dimensionalcase,someof theelementsneartheinterfacecollapsed

to createdegenerateandskewedelements.Further,extremelysmalltetrahedralelements

wererequiredto capturetheinterstitialmatrixgeometry.ComputerstorageandCPUtime

limitationsmadethe useof sucha finite elementmeshimpractical.Initially multipoint

constraintelementswereusedto imposeperiodicboundaryconditionsin/uTEz-IO. To

reducecomputerstorage,thetransformationmethod(forperiodicboundaryconditions)and

the skylinesolver (Bathe,1982)wereincorporatedin the finite elementcode.Further

reductionin computerstoragecanberealizedby usingsparsematrixsolversinsteadof the

skylinesolver.

The averaged Gaussianintegration technique was used to compute the

inhomogeneouselementstiffnessmatrixin/_TE Z- 10. The inhomogeneous element averages

the properties of the constituent materials in the element, and assumes that the strain

distribution is continuous within the element. Consequently, the inhomogeneous element

cannot capture the discontinuity in strains across the yam-matrix interface. Thus the

corresponding microstresses computed in the vicinity of the interface will be inaccurate. The

accuracy of the microstresses may be improved by refining the (inhomogeneous element)

mesh, but that would greatly increase the degrees of freedom in the numerical model. This

emphasizes the need for effective finite element preprocessing codes for meshing the

unit-cell of the textile composite with homogenous elements. It will also be useful to

interface the finite element results with suitable graphics software. This will enable the user

to get a feel for the problem by directly visualizing the unit-cell deformed configurations,

and the microstress/microstrain distributions within the unit-cell.
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Chapter4presentedfailureenveloperesultsfor aplain-weavetextilebeam.Implicit

to theprocedurefor determiningthefailureenvelope,wastheassumptionthatmicroscopic

failure in theunit-celltranslatedto macroscopicfailureof thecomposite.Theprocedureis

simplisticandconservative,butyetof useto astructuraldesigner.Moreworkremainsto be

done in obtainingresults for failure envelopesusing the strengthmodels for textile

compositecontinuumandfor acompositeplate,asexplainedin Chapter4.An issuewhich

thisstudy,duetotimelimitations,doesnotaddressisparametricanalysesto studytheeffect

of changingconstituentmaterialpropertiesand fiber volume fraction on composite

properties.Both thefinite elementanalysisandSAM canbe easilyextendedfor other

macroscopiccompositepropertiessuch as thermal conductivities,electro-magnetic

propertiesandsoon.
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1. Introduction

This manual describes the codes ItTEz-IO and ItTEz-20, which are based on

micromechanical analysis procedures to predict the overall (macroscopic) thermo-elastic properties

for a textile composite. The analysis assumes that the textile composite material is comprised of

repeating unit-cells or representative volume elements (RVE's). In other words, the unit--cell can

be considered as a building block, which by assembling in all three dimensions would form the

parent textile composite material as shown in Fig. l(a). On the microscale (comparable to the

dimensions of the unit-cell), the unit-cell consists of the reinforcing yams, and the interstitial matrix

material (Fig. lb). However, on the macroscale (comparable to the dimensions of the structural

component), the composite is assumed to be homogeneous. The object of the micromechanical

analysis is to determine the macroscopic stiffness coefficients and coefficients of thermal expansion

(CTE's) of the textile composite from the yarn and matrix material properties, and the yam geometry

within the unit-cell.

(b)
(a) /

_mlJ _P_f_ _P_P

_f Ff_f_P_f_f F

Figure 1. (a) Textile composite continuum; (b) unit-cell; (c) textile composite plate
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1.1 Constitutive Models

The micromechanical analysis assumes that the unit-cells span the composite in all the three

dimensions. This assumption is true in the case of a thick textile composite. However, there are many

structural applications in which thin composites are used. In such cases, there will be fewer

unit-cells in the thickness direction (Fig. lc). Then the composite structure is modeled as a plate to

determine its corresponding thermo-elastic coefficients. Consequently, we have two constitutive

models - for thick (three-dimensional) textile composites and textile composite plates.

1.1.1 3-D Textile Composite

Consider a 3-D textile composite with unit-cells repeating in all three dimensions. Let the

unit-cell be a rectangular parallelepiped with edges parallel to the coordinate axes x], x2 and x3. On

the macroscale the composite is assumed to be homogeneous and orthotropic and the composite

behavior is characterized by the following constitutive relation:
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where eio, Yio and _i are the midplane axial strain, shear strain and curvature; a p and tiP are the plate

thermal expansion and thermal bending coefficients; N/and Mi are the axial force and bending

moment resultants respectively in the homogeneous plate. [A], [B] and [D] are the plate extensional

stiffness, coupling stiffness and bending stiffness matrices respectively.

1.2 Brief Background of/aTEz-IO and IzTEz-20

As was mentioned earlier, ,uTEz-IO and ItTEz-20 are based on micromechanical

algorithms to predict the effective stiffness and thermal coefficients for a textile composite. The

constitutive relation:

"Nx _

Nr

N.

< >

Mx

i Mr

where {tr } and {e } are the macroscale stresses and strains respectively;A Tis a uniform temperature

difference throughout the unit-cell; {a s } and [C] are the macroscale CTE's and orthotropic elasticity

matrix to be determined.

1.1.2 Textile Composite Plate

The textile composite plate is assumed to be in the xy-plane with unit-cells repeating in the

x and y directions. The plate is assumed to be homogeneous on the macroscale and given by the
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algorithms are briefly explained in this section. The concepts behind _TEz-IO are explained in

detail in references 1-6. Reference 7 summarizes references 1-6, and also explains I.tTEg-20's

computational procedure.

1.2.1 ItTEz-IO Theory:

ItTEz-IO, pronounced as microtech-10, is a finite-element code to predict the textile

composite properties. In fact, this code can be used for any composite in which the inclusions follow

a repeated pattern - such as a unidirectional composite with fibers in a square array. Both the 3-D

(continuum) properties as well as the plate properties can be computed.

(a)
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(b)

Figure 2. (a) unit-cell discretized into uniform brick elements (b) eight-node brick element

The unit-cell is assumed to be a rectangular hexahedron and divided into regular-sized

eight-node brick elements as shown in Figure 2. The number of divisions along the 1-, 2- and

3-axes are specified by the user. Periodic displacement and traction boundary conditions are

imposed between corresponding nodes on opposite faces of the unit-cell. The periodic boundary

conditions (BC's) ensure that the displacements and stresses are continuous across the faces of the

unit-cell. It should be remembered that the elements are in general, inhomogeneous, i.e., consist of

more than one material. The element stiffness matrix is obtained as the averaged stiffness of the

different materials in the element. The numerical procedure implemented in/t TEz-10 to compute

the element stiffness matrix is explained in appendix A. 1.

To determine the stiffness coefficients, periodic displacement BC's are applied such that only

one of the macrostrain components in Eqn. (1) is nonzero. For example, to impose unit e 11, the face

x_=L1 is pulled by a distance of L_ in the 1-direction relative to its opposite face given by x_=0.

Simultaneously, the difference in displacements in the 2- and 3-directions for the above two faces;



106

and the displacement difference in all three directions for the remaining two pairs of faces are set

to zero. From the finite element results, the macrostresses required to create such a deformation state

are computed. Substituting the macrostresses in Eqn. (1) and knowing that Ell is the only nonzero

strain component, the stiffness coefficients corresponding to the first column of [C] are obtained.

A similar procedure is followed to compute the remaining five columns of [C], and the composite

CTE's.

The microstresses for the six deformation cases, and the thermal residual microstresses for

a given temperature difference (between composite curing temperature and room temperature) can

also be predicted. However, the computed microstresses will be inaccurate in the vicinity of the

yarn-matrix interface.

1.2.2 /zTEz-20 Theory:

The code ltTEz-20 implements the Selective Averaging Method (SAM) to estimate the

composite thermo-mechanical coefficients. SAM is an approximate analytical method which is

faster and easier to implement than ItTEz-IO. The unit--cell is discretized into slices on the

mesoscale as shown in Fig. 3. The direction in which the unit-cell is sliced is dependent on the state

of loading. For normal loads (first three load cases) the slices are perpendicular to the direction of

loading. In the case of shear loading (fourth, fifth and sixth load cases), the slices are parallel to the

plane of shear. The slices are in turn sub-divided into elements on the microscale. The slice stiffness

and then the composite (macroscale) stiffness are determined by utilizing a combination of isostress

and isostrain assumptions on the mesolevel and macrolevel respectively. In other words, the

composite stiffness coefficients are obtained by selectively averaging the stiffness and compliance

coefficients of the elements and the slices. It should be noted that the periodic BC's are not enforced

in SAM. For further explanation the user should refer to reference 7.
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(a) (b) (c)

Figure 3. Hierarchy of discretization for a unit-cell to implement SAM: (a) unit-cell; (b) slice;

(c) element
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2. Preparing Input Files

This section of the manual describes the procedure to prepare input files for both _ TE Z- 10

and/_ TE Z-20. The input files are identical for both the codes, except that post-processing options

are available in/_TEz-lO. In both codes, the XYZ-coordinate system is used for the unit-cell, and

the 123--coordinate system for the yams. The XYZ-coordinate system is also referred to as the

global coordinate system (GCS), and the 123-coordinate system as the local coordinate system
(LCS).

2.1 Input for/_ TEz-IO:

Essentially, there are two input files to I_TEz-IO - textile.inp and yarn.inp. The file

textile.inp reads the unit-cell geometry, the yam and matrix material properties, and the user options.

Whereas file yarn.inp reads the yarn/s architecture within the unit-cell. The procedures to create the

above two input files are described in the following sub-sections. The various steps to create the

input are stated along with a short explanation. After all the steps are discussed, examples of

complete input files are documented.

2.1.1 Steps to create textile.inp :

The below stated steps (with the exception of the first step) consist of a character line, which

may be followed by numeric data. The character line may be entered completely in upper-case or

completely in lower-case. The numeric data is represented by integer/real variables. The text to be

actually typed in the files are preceded and followed by dashed-lines, to differentiate them from the
rest of the text.

1. The first step is to enter the comment line/s. Each line can be up to 80 characters long, and

multiple lines (up to 100) are allowed. A blank line should be used to denote the end of the comment

lines, for eg.,

textile.inp - plain weave textile composite plate example

Thermal residual micro stresses are to be computed

2. Enter the material properties of the yams (each yam can have different properties). This is

done by assigning a number to every yam. Then the data is input as:

yarn

NYR

i, EL, ET, GLT, PNULT, PNUTS ,ALPHAL, ALPHAT

2 ,EL, ET, GLT, PNULT, PNUTS ,ALPHAL, ALPHAT

NYR, EL ,ET, GLT, PNULT, PNUTS ,ALPHAL, ALPHAT

NYR is an integer representing the number of yams. Since the yarns are assumed to be

transversely isotropic, five elastic-stiffness properties and two thermal expansion coefficients are
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requiredfor eachyarn.In thecoordinatesystemshownin Fig.4,theL-axis correspondstotheaxis
of theyarn.TheT- andS-axesaremutuallyperpendicularaxeson thetransverseplane,whichis
alsothe planeof isotropy.EL andET aretheelasticmoduli of theyam in thelongitudinaland
transversedirectionsrespectively.GLTis theshearmodulusin theL-T plane;PNULTis themajor
Poissonratioin theL-T plane,PNUTSisthePoissonratioin theT-Splane.ALPHAL andALPHAT
aretheyarnCTE'sin the longitudinaldirectionandtransversedirectionsrespectively.

T

1
Figure 4. Cross-section of yarn showing the longitudinal (L) and transverse (T and S)

directions.T-S plane is the plane of isotropy.

3. Enter the matrix (isotropic) properties.

matrix

EM, PNUM, ALPHAM

EM and PNUM are the elastic modulus and the Poisson ratio of the matrix material; ALPHAM is

the coefficient of thermal expansion of the matrix.

4. Define the bounds of the unit-cell as follows:

uc-domain

LX,LY,LZ

where LX, LY and LZ are the lengths of the unit--cell in the three dimensions.

5. Specify the unit-cell type, and the number of elements that the unit-cell is to be discretized.

If the composite 3-D continuum properties are to be determined, then the input would be of the form:

solid

NX,NY,NZ
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On the other hand, if the plate properties are to be computed, then the input would be of the form:

plate

NX, NY, NZ

NX, NY and NZ are the number of divisions along the the three dimensions. Consequently, the total

number of elements generated would be NXxNYxNZ. Both 'solid' and 'plate' options cannot be

used simultaneously.

6. This step is optional. If the following line is typed,

forces

then the average stresses in the case of 'solid' option, or the average force and moment resultants

in the case of 'plate' option, acting on each face of the unit--cell are computed and printed in file

textile.out. This option should be used only if required, since it increases the code run-time.

7. This step is also optional. If the microstresses within the unit--cell are to be computed then

the following line is entered:

stresses

Then the microstresses are computed at the Gaussian center of each element, for the six deformation

cases and printed out in six different files, namely, stressl.dat, stress2.dat, stress3.dat, stress4.dat,

stress5.dat and stress6.dat (Appendix A.2). If the thermal residual microstresses are also to be

computed, then the input would be

tstresses

DELTAT

where DELTAT is the difference between the room temperature and composite fabrication

temperature (in most cases DELTAT is negative). Then, in addition to the above six files, the file

tsress.dat will be generated, containing the thermal microstresses.

The commands to compute the microstrains are analogous to the above two commands, and

are given by:

strains

or

tstrains

DELTAT

Then the files which would contain the microstrain data are strainl.dat, strain2.dat, strain3.dat,

strain4.dat, strain5.dat, strain6.dat and tstrain.dat (Appendix A.2).
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Note:Onlyoneof theabovefourcommandsshouldbeenteredin textile.inp.

8. This is the final step, which indicates the end of the input file.

finish

The order of steps 5, 6 and 7 may be interchanged. However, the user is advised to follow

the order of the listed steps. Steps 1-5 and Step 8 are sufficient for computing the composite

thermo-mechanical coefficients. Steps 6 and 7 should only be used when additional post-processing

information is required, i.e, average forces and microstress/microstrain data.

2.1.2 textile.inp example

Example of textile.inp for a plain-weave textile composite.

yarn

4

1,144.8d9,11.73d9,5.52d9,0.23,0.30,-0.324d-6,14.0d-6

2,159.8d9,10.90d9,6.40d9,0.38,0.30,0.0450d-6,20.2d-6

3,144.8d9,11.73d9,5.52d9,0.23,0.30,-0.324d-6,14.0d-6

4,159.8d9,10.90d9,6.40d9,0.38,0.30,0.0450d-6,20.2d-6

matrix

3.45d9,0.35d0,40.0d-6

uc-domain

2.822d-3,2.822d-3,0.2557d-3

solid

10,10,7

forces

tstrains

-150.0d0

finish

In the above example, the unit-cell contains four yarns. Yams 1 and 3 have identical material

properties and so do yams 2 and 4. Since the 'solid' option is used, the continuum properties for the

composite are computed and printed into file textile.out. The average stresses on the faces of the

unit-cell are also printed in file textile.out. The microstrains for the six deformation cases and the

thermal microstrains (for a temperature difference of-150 units) are also determined.

2.1.3 Steps to create yarn.inp :

The yam geometry information is entered in file yarn.inp. It is assumed that the end-faces

of the yam are planar which coincide with the faces of the unit-cell. The yams are modeled by

defining the end cross-section, and by sweeping this cross-section along the yam axial direction (or

yam path). Listed below are the steps required to create yarn.inp.

1. Enter the comment line/s. A blank line should follow the last comment line, for eg.,
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yarn.inp - plain weave textile composite plate example

2. Enter the number of yarns as shown below.

HEADERLINE

NYR

The HEADERLINE can be any string of characters (up to 80 characters), or even a blank line. It

is essentially a dummy line, and is not used in the code. NYR stands for the total number of yams,

and this integer must be the same as the total number of yams entered in textile.inp. An example of

this step would be:

number of yarns

i0

3. Enterthenumberofpointsrepresentingthecross-sectionofyarnlas:

HEADERLINE

NPPTS

where NPPTS denotes the number of points. For example, eight points are chosen in Fig. 5(a) to

model the yam cross-section. Hence the input may be entered as:

number of polygon points in yarn 1

8

4. Enter the (x3, x2) coordinates for all the points representing the cross-section of yam 1. This

is done by choosing any point as the starting point and numbering all the points (from 1 to NPPTS)

along the counter-clockwise direction (denoted by circled numbers in Fig. 5a). Then the (x3, x2)

coordinates are entered for every point in ascending order, as shown below:

HEADERLINE

X31,X21

X32,X22

X33,X23

X3NPPTS,X2NPPTS



112

The first digit after 'X' refers to the coordinate axes number and the second to the point number. For

example X32,X22 would be the (x3, x2) coordinates of point 2 on the cross-section. The yarn

cross-section will therefore be approximated as a NPPTS-sided polygon as shown in Figure 5(b).

5. Enter the number of points chosen to represent the axial path of yarn 1. In the illustrated

example 11 points are chosen to model the yarn path (Fig. 5c). The information is typed as:

HEADERLINE

NAPTS

where NAPTS is the total number of axial points.

2 2

(a) _ (b) J,__
® 3 3

@

(c) (d)
2 2

Figure 5. (a) yam cross-section in the 2-3 plane showing the points chosen to represent the

yarn cross-section; (b) approximated polygonal cross-section; (c) yarn path in the 1-2 plane;

(d) approximated yarn path.

6. Input the (xl, x2) coordinates for the axial points as follows (it is assumed that the yarn path

lies on the 1-2 plane). First, number the points successively along the yarn direction (Fig. 5c). The

starting point should coincide with the origin. Then enter the data as:
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HEADERLINE

XlI, X21

XI2, X22

XlNAPTS,X2NAPTS

The first digit after 'X' refers to the coordinate axes number and the second to the axial point number.

For example X12,X22 are the (xb x2) coordinates of axial point numbered 2. Like in Step 4 the data

should be entered in ascending order such that the last line corresponds to the coordinates for point
NAPTS.

7. Enter the transformation matrix for yam 1 to transform the coordinates from the yam 123

coordinate system (LCS) to the global XYZ coordinate system (GCS). The transformation is given

by the following equation:

{i} [rllrl2rl3] fxlt
= 1r21r22 7"23/ x2 (3)

r33J 3

where [T] is the 3x3 transformation matrix.

Z

2
\
\
\
\

/

X

Y

Figure 6. Sketch to illustrate the transformation of coordinates from the yam coordinate

system to the global cooridnate system
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Consider Fig. 6, in which the yam coordinate system has been translated so that its origin

coinicides with the global coordinate system. The components of the transformation matrix are

determined by using the following equation:

[T]

"(S, Xl)

= (Y,x 1)

(Z, xl)

(X, x 2) (X, x3) ]

(Y,x 2) (Y, x3) /

(Z, x3) (Z, x3) J

(4)

where (Xi, xj) denotes the cosine of the angle between the axis X i in the GCS and the jth axis in the

LCS. Figure 7 shows an example of a unit-cell with one yam. Only the end-faces of the yarn are

shown. The 1-2 plane which is assumed to contain the yam path (not shown) is parallel to the Y-Z

plane. From Eqn. (4) the transformation matrix for the yarn in the example would be:

[!00][T] = 1
0

The transformation matrix is entered as:

HEADERLINE

TII,TI2,TI3

T21,T22,T23

T31,T32,T33

Y

Z

2

3

X

Figure 7. Example to explain the transformation of coordinates from yam coordinate system

to global coordinate system
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8. Enter the global coordinates (xg,yg,zg) of the first axial point of yarn 1, i.e., the global

coordinates corresponding to the origin of the 123 coordinate system. This is typed as:

HEADERLINE

XG,YG,ZG

9. Repeat Steps 3-8 for the remaining yams in the order of the yam number.

2.1.4 yarn.inp example

The following example is for a unit--cell with two yams. The unit--cell is of unit length in

all three dimensions. The path of the first yam is assumed to be straight and parallel to the z-axis

(Fig. 7). Therefore only two axial points are required to represent the path of the first yarn.

yarn.inp: Example of a composite with a two yarns. The first yarn

is a straight yarn along z-direction with circular cross-section.

cross-section of yarn 1

represent yarn path of yarn 1

number of yarns

2

number of points to represent

12

x3,x2 of polygon points

0.437,0

0. 37845,0. 2185

0.2185,0.37845

0,0.437

-0.2185,0.37845

-0. 37845,0.2185

-0. 437,0

-0.37845,-0.2185

-0.2185,-0.37845

0,-0.437

0.2185,-0.37845

0.37845,-0.2185

number of axial points to

2

XI,X2 of axial points

0,0

1,0

transformation matrix

0,0,-i

0,i,0

1,0,0

for yarn 1

global coordinates of first axial point for yarn 1

0.5,0.5,0

number of points to represent cross-section of yarn 2
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4

X3,X2 of polygon points

0.4,0

0,0.4

-0.4,0

0,-0.4

number of axial points to

5

Xl,X2 of axial points

0,0

0.25,0.41

0.50,0

0.75,-0.41

1,0

transformation matrix for

1,0,0

0,i,0

0,0,I

global coordinates of first

0,0.5,0.5

represent yarn path of yarn 2

yarn 2

axial point for yarn 2

2.2 Input for ItTEx-20:

The input files to ItTE)_-20 are sam.inp and yarn.inp (Appendix A.3). File sam.inp is

similar in structure to that of textile.inp. The user should follow Steps 1-5 and Step 8 in sub-section

2.1.1 to create sam.inp. Steps 6 and 7, which are post-processing options are not available for

It TEz-20. The steps to generate yarn.inp are described in sub-section 2.2.3.
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3. Compiling the Codes

Both I2 TEz-10 and t_ TE Z- 20 are coded in FORTRAN. Double precision is used for all the

real variables. The user might require to compile the codes depending on the size of the problem

he/she needs to run. For instance, consider the case where the dimension statements for the number

of divisions of the unit-cell in BTEx-IO were set to, say, seven in all three directions. If the user

wanted to run a case with more than seven elements in any one of the directions, he/she will have

to recompile/_ TEz-10. Or conversely, the user might want to reduce the dimensions for a smaller

problem, so as to reduce the executable size. In the following two sub-sections, the procedures to

compile the codes are explained.

3.1 Compiling IzTEz-IO

The file paramlO.var contains PARAMETER statements which assign integer values to

different parameters (or symbolic names). The parameters are in turn used to dimension the arrays

in ItTE%-IO. So the values assigned to the parameters are to be changed, to change the dimension

of the arrays in ItTE%-IO.

Actually, only seven parameters in paramlO.var need to be changed, and the remaining

parameters are automatically modified. The section of paramlO.var with the seven parameter

statements is given below (for an example):

c FILE PARAMI0.VAR

c ...... The variables in the following SEVEN parameter statements are to be

c ...... changed to change the array sizes in the source code microtechl0.

parameter

parameter

parameter

NXDIM = 15)

NYDIM = 15)

NZDIM = I0)

parameter NSTIFF = 8341113)

parameter

parameter

parameter

(KYARN = i0)

(KAXIAL = i00)

(KPOLY = i00)

c ...... the following dimensions are self-generated

parameter (NPOSX = NXDIM + i)
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The parameters NXDIM, NYDIM and NZDIM denote the number of divisions used to

discretize the unit-cell along the X-, Y- and Z-directions. Fo example, if 17 elements are to be used

along the X-direction, then the value assigned to NXDIM must be changed to 17 (or greater than

17). KYARN stands for the number of yarns in the unit-cell; KAXIAL represents the maximum

number of axial points used for a yarn; and KPOLY for the maximum number of cross-section points

used for a yam. For instance, if 6 axial points are used to model one yarn and 8 axial points for

another, then KAXIAL must be greater than or equal to 8.

The parameter NSTIFF assigns a value to the dimension of the global stiffness array in the

source code. The global stiffness is stored as a one-dimensional array, using the skyline technique.

In this technique, all the stiffness elements below the skyline 8 are stored in the one-dimensional

array. The question arises, as to what value is to be assigned to NSTIFF. This is found using a

two-step process. First enter the right values for the remaining six parameter statements, and assign

a small number, say one, to NSTIFF. Then create the input files, textile.inp and yarn.inp, compile

and run the code. The following message should show up on the terminal, namely,

total storage required for stiffness = NRSTIFF

stiffness matrix is under-dimensioned

set NSTIFF in file paraml0.var to required dimension

where NRSTIFF is the exact storage required for the stiffness array. This integer value should be

assigned to NSTIFF in paramlO.var and the code should be recompiled. The stiffness storage will

depend on the number of elements used and whether the 'plate' or 'solid' options were chosen. The

values to be assigned to the stiffness parameter for some discretizations (NXxNYxNZ) of the
unit--cell are listed below.

NX NY NZ NSTIFF (solid) NSTIFF (plate)

5

6

7

8

9

10

11

12

13

14

5

6

7

8

9

10

11

12

13

14

5

6

7

8

9

10

11

12

13

14

49173

126201

278001

549051

998733

1703493

2759001

4282311

6414021

9320433

39948

94773

197298

373371

656832

1090593

1727718

2632503

3881556

5564877

For the above discretizations, the first step of the compilation procedure may be bypassed, i.e, the

correct NSTIFF parameter can be assigned rightaway. An additional listing of stiffness parameters

for discretizations ranging from 8-12 elements in the three directions are given in Appendix A.4.

3.2 Compiling ItTEz-20

The parameters in file param20.var should be changed to alter the dimensions of arrays in

code ItTEz-20. Given below is a partial listing ofparam20.var for an example.
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FILE PARAM20. VAR

c ...... The variables in the following SIX parameter statements are to be

c ...... changed to change the array sizes in the source code microtech20.

parameter

parameter

parameter

(NXDIM = 50)

(NYDIM = 50)

(NZDIM = 50)

parameter

parameter

parameter

(KYARN = I0)

(KAXIAL = i00)

(KPOLY = i00)

c ..... the following dimensions are self-generated

parameter (NELEMS = NXDIM*NYDIM*NZDIM)

Here NXDIM, NYDIM and NZDIM represent the dimensions for the number of divisions of the

unit-cell in the X-,Y- and Z-directions (Fig. 3). The definitions for KYARN, KAXIAL and

KPOLY are the same as that in the previous sub-section.
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4. Interpreting Ouput Files

In this section, a brief explanation is given to understand the computed data for both the

codes. Most of the data printed out in the output files is self--explanatory. Only the information which

may not be obvious to the user is presented here.

4.1 ItTEz-IO Output

As shown in Appendix A.2, the output files are textile.out and yarn.dat. In addition, if the

'stress' or 'strain' options are used, then the stress/strain data are printed out in

stressl.dat, .... stress6.dat or strainl.dat, .... strain6.dat (if the 'tstress' or 'tstrain' option were used

instead, then an additional file tstress.dat or tstrain.dat is created).

4.1.1 Interpreting textile.out

Consider the following partial listing of file textile.out:

plain-weave textile composite

No. of Yarns = 4

Yarn No. eL eT gLT pnu LT pnu TT

1 0.14480E+12 0.I1730E+II 0.55200E+I0 0.23000E+00 0.30000E+00

2 0.14480E+12 0.I1730E+II 0.55200E+I0 0.23000E+00 0.30000E+00

3 0.14480E+12 0.I1730E+II 0.55200E+I0 0.23000E+00 0.30000E+00

4 0.14480E+12 0.I1730E+II 0.55200E+I0 0.23000E+00 0.30000E+00

Yarn No. alpha L alpha T

1 -.32400E-06 0.14000E-04

2 -.32400E-06 0.14000E-04

3 -.32400E-06 0.14000E-04

4 -.32400E-06 0.14000E-04

Matrix Properties :

E pnu

0.34500E+I0 0.35000E+00

alpha

0.40000E-04

unit-cell length

divisions of SOLID unit-cell :

x y z

0.28220E-02 0.28220E-02 0.25570E-03

15 15 I0

volume

volume

volume

volume

volume

fraction of matrix... =

fraction of yarn... 1 =

fraction of yarn... 2 =

fraction of yarn... 3 =

fraction of yarn... 4 =

0.14000

0.21506

0.21506

0.21500

0.21489
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The volume fractions are computed by determining the material property code for all the element

Gauss points. Eight Gauss points are used per element, which means that the total number of

representative points will be eight times the number of elements. So the computed volume fraction

indicates the fraction of the representative points whose material code corresponds to a particular
material constituent.

If the 'forces' option were included in textile.inp, then the averaged stresses/force resultants

are printed in textile.out. The nodal forces are computed at the end-faces of the unit-cell, and the

nodal forces are averaged over the face to give the macroscale stresses or force resultants. For

example, if the 'solid' option is used along with 'forces' option then the macroscale Oxx is computed
as;

1ZF(xn)(Lx, Y,Z) (5)
tTxX-ty].._

n

where F(xn) is the nodal force in the x-direction at the nth node, and _ denotes summation over all
n

nodes on the face X=Lx. On the other hand, for the 'plate' option, the force resultant Nx and moment

resultant Mx on the face X=Lx are computed as:

1
Nx = -_yy_" F(xn)(Lx, Y,Z)

n

1ZZF(xn)(Lx, Y,Z)Mx= 
n

(6)

Listed below are the macrostress data for an example problem (when 'solid' and 'forces' options

were used):

Results for SOLID MODEL obtained by AVERAGING FORCES

Load case = 1

Negative yz-plane

Positive yz-plane

Sigma XX Tau XY Tau XZ

0.57691E+II -.51828E+01 -.19312E+04

0.57691E+II -.51828E+01 -.19312E+04

Negative xz-plane

Positive xz-plane

Tau XY Sigma YY Tau YZ

-.51854E+01 0.84979E+I0 -.59790E+04

-.51803E+01 0.84979E+I0 -.59790E+04

Negative xy-plane

Positive xy-plane

Tau XZ Tau YZ Sigma ZZ

-.19312E+04 -.59790E+04 0.47023E+I0

-.19312E+04 -.59790E+04 0.47023E+I0

Load case = 2
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3-D Continuum Stiffness Matrix is ...

0.57691E+II 0.84979E+I0 0.47023E+I0 -.59790E+04

0.84979E+I0 0.57674E+II 0.47020E+I0 -.I1463E+05

0.47023E+I0 0.47020E+I0 0.I1591E+II -.52929E+01

-.59790E+04 -.I1463E+05 -.52930E+01 0.43305E+I0

-.19312E+04 -.28005E+04 -.I0377E+04 -.46506E+01

-.51828E+01 -.42448E+01 -.93648E+00 0.56016E+01

Ex = 0.55005E+II

Ey = 0.54988E+II

Ez = 0.I0923E+II

PNU yz = 0.35772E+00

PNU xz = 0.35774E+00

PNU xy = 0.I1818E+00

Gyz = 0.43305E+I0

Gxz = 0.43308E+I0

Gxy = 0.47838E+I0

3-D Coefficients of Thermal

Alpha X = 0.15570E-05

Alpha Y = 0.15580E-05

Alpha Z = 0.22755E-04

Alpha YZ = 0.15322E-I0

Alpha XZ = 0.80251E-II

Alpha XY = 0.11073E-13

Expansion are ...

-.19312E+04

-.28005E+04

-.I0377E+04

-.46505E+01

0.43308E+I0

-.36642E+02

-.51827E+01

-.42448E+01

-.93648E+00

0.56016E+01

-.36642E+02

0.47838E+I0

The load case number refers to the state of deformation in the unit-cell. Load cases 1 to 6 refer to

the state of deformation to determine the corresponding column of the plate/continuum stiffness

matrix, and load case 7 refers to the state of thermal loading (to determine CTE's). The data listed

below the load case numbers are the averaged stress resultants. This means that the sign of the

stresses on the negative planes (planes with outward normals in the negative X-,Y- and

Z-directions) are reversed. The same applies to the force and moment resultants in case the 'plate'

option is used. These resultants obtained by averaging the nodal forces are used to construct the

effective stiffness matrix - column by column. This stiffness matrix in theory has to be symmetric.
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In practice, the finite element scheme and round-off errors may lead to unsymmetry of the stiffness

matrix. Therefore, the effective compliance matrix is averaged, and the 3-D elastic constants are

predicted by comparing the compliance coefficients with that of an orthotropic medium (this step

is skipped for the 'plate' model and the [A], [B], [D] coefficients are listed directly).

The macroscopic stresses can also be obtained by averaging the corresponding microstress

component over the unit-cell volume. For instance, the macroscopic trxx can be computed as:
/-

= 11 Y,zodV (7)
d

V

where V is the volume of the unit--cell and o"m indicates the microstress component. In fact,

irrespective of the options used, the effective stiffness matrix is always computed by averaging the

microstresses (in addition, the stiffness is computed by averaging the nodal forces if the 'forces'

option is used). This stiffness matrix is listed at the bottom of textile.out as shown below:

Results for SOLID MODEL obtained by AVERAGING MICROSTRESSES

3-D Continuum Stiffness Matrix is ...

0.57691E+II

0.84979E+I0

0.47023E+I0

-.59790E+04

-.19312E+04

-.51828E+01

Ex =

Ey =

Ez =

0.84979E+I0

0.57674E+II

0.47020E+I0

-.I1463E+05

-.28005E+04

-.42448E+01

0.55005E+II

0.54988E+II

0.I0923E+II

0.47023E+I0

0.47020E+I0

0.I1591E+II

-.52930E+01

-.10377E+04

-.93648E+00

-.59790E+04

-.I1463E+05

-.52930E+01

0.43305E+I0

-.46505E+01

0.56016E+01

-.19312E+04

-.28005E+04

-.I0377E+04

-.46505E+01

0.43308E+I0

-.36642E+02

-.51828E+01

-.42448E+01

-.93648E+00

0.56016E+01

-.36642E+02

0.47838E+I0

PNU yz = 0.35772E+00

PNU xz = 0.35774E+00

PNU xy = 0.I1818E+00

Gyz = 0.43305E+I0

Gxz = 0.43308E+I0

Gxy = 0.47838E+I0

3-D Coefficients of Thermal Expansion are ...
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Alpha X = 0.15570E-05

Alpha Y = 0.15580E-05

Alpha Z = 0.22755E-04

Alpha YZ = 0.15322E-I0

Alpha XZ = 0.80251E-II

Alpha XY = 0.II073E-13

The method by which the elastic constants are calculated from the stiffness matrix is identical to the

method explained in the previous paragraph.

4.1.2 Interpreting stress data

If'stress', 'tstress', 'strain' or 'tstrain' options are used, the microstresses will be printed out

in different files as shown in Table 1. The first column states the deformation for which the

microstresses are obtained.

Table 1. List of files containing the microstresses for various options.

'stress' option 'tstress' option 'strain' option 'tstrain' option

solid: Exx=l stress]Mat stressl.dat strainl.dat strainl.dat
plate: _xx=l

solid: Eyy=l stress2.dat stress2.dat strain2.dat strain2.dat
plate: Eyy=l

stress3.dat stress3.dat strain3.dat strain3.datsolid: Ezz=l

plate: Yxy=l

solid: yyz=l
plate: _xx=l

solid: yxz=l

plate: ×yy=l

solid: Yxy=l

plate: ×xy=l

stress4.dat stress4.dat

stress5.dat stress5.dat

stress6.dat stress6.dat

solid: thermal stresses -- tstress.dat

plate: thermal stresses

strain4.dat strain4.dat

strain5.dat strain5.dat

strain6.dat strain6.dat

tstrain.dat
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The following is a example listing of the file stress5.dat when the 'plate' option was used:

stress5.dat

micro stresses computed for deformation kappa-yy = 1

The stresses are in the LTS-coordinate system for the yarns and

the XYZ-coordinate system for the matrix.

x y z yarn no. sigma LL sigma TT sigma SS

tau TS tau LS tau LT

0.47033E-03 0.47033E-03 0.42617E-04 3 -.85259E+07

0.18250E+04

0.14110E-02 0.47033E-03 0.42617E-04 0 -.21669E+06

-.14835E+05

0.23517E-02 0.47033E-03 0.42617E-04 1 -.I1232E+06

-.20189E+06

0.47033E-03 0.14110E-02 0.42617E-04 0 -.98276E+05

0.71882E+04

0.14110E-02 0.14110E-02 0.42617E-04 0 -.81038E+05

0.42131E+03

- 16183E+06

- 50603E+05

- 47759E+06

0 I0784E+04

- 16823E+07

0 99910E+04

- 24395E+06

0.82057E+03

-.21669E+06

-.46568E+01

0.90249E+05

-.86194E+05

-.14582E+06

0.33190E+05

-.14407E+06

0.57055E+05

-.33342E+05

0.32047E+05

-.21813E+05

-.64133E+05

0.23517E-02 0.23517E-02 0.21308E-03 2 0.I1231E+06 0.16826E+07 0.14431E+06

0.20124E+06 0.99994E+04 0.56985E+05

Maximum tensile/compressive stress in each constituent material :

yarn no. sigma LL sigma TT sigma SS tau TS tau LS tau LT

0 0.21679E+06 0.47773E+06 0.14596E+06 0.14843E+05 0.I0784E+04 0.33190E+05

-.21680E+06 -.47773E+06 -.14597E+06 -.14835E+05 -.10958E+04 -.64133E+05

1 0.15747E+06 0.16823E+07 0.14408E+06 0.13981E+06 0.I0974E+05 0.27012E+06

-.15750E+06 -.16823E+07 -.14407E+06 -.20189E+06 -.I0984E+05 -.15633E+06

2 0.15755E+06 0.16826E+07 0.14431E+06 0.20124E+06 0.I0984E+05 0.59024E+05

-.15752E+06 -.16826E+07 -.14432E+06 -.24088E+05 -.10993E+05 0.00000E+00

3 0.85229E+07 0.16186E+06 0.90249E+05 0.47178E+05 0.49995E+05 0.13948E+06

-.85259E+07 -.16183E+06 -.89957E+05 0.00000E+00 -.50603E+05 -.86194E+05

4 0.85259E+07 0.16182E+06 0.89961E+05 0.00000E+00 0.49997E+05 0.00000E+00

-.85229E+07 -.16185E+06 -.90253E+05 -.18414E+04 -.50605E+05 -.86195E+05
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The microstresses/strains are computed at the Gaussian center of all the elements. The first section

of the file contains the microstresses at all the element-center points. The point location is identified

by the X, Y and Z columns and the material property at the point is given by the 'yarn no.' column.

A yam number of zero implies that the point is contained in the matrix material. The stresses/strains

for a yarn point are listed in the yam LTS coordinate system (Fig. 4). However, the stresses/strains

for a matrix point are listed in the global XYZ coordinate system. Therefore 'sigma LL' for a yarn

point would mean the longitudinal stress component; and the normal stress component along the

x-direction for a matrix point. The last section of the file lists the maximum tensile and compressive
stresses/strains in the different constituent materials.

4.1.3 Interpreting yarn.dat

The element stiffness matrix is computed as the averaged stiffness of the constituent

materials in that element (Appendix A. 1). For this purpose, it is required to determine the material

property of the element Gauss points. The material property of a Gauss point is obtained in the

following fashion. The yam volume is discretized into eight-node hexahedral isoparametric finite

elements as shown in Fig. 7. The polygon points (used to reperesent the yarn cross-section in section

2.1.3) are the nodes on the circumference of the yarn. For a given cross-section, the center node

coordinates are obtained by averaging the circumferential nodal coordinates. The finite elements are

shaped as triangular prisms (a face of the hexahedron is collapsed to an edge). The length of the prism

is governed by the spacing of the axial points, which represent the yarn path. An iterative algorithm

is used to determine whether the point (whose material property is to be determined) is contained

within the volume of a given element. If not, the procedure is repeated for all the elements in the

yarn. If the point does not belong to any of the yams, it is designated as a matrix point. If the point

belongs to a yarn element, the local yam direction is computed as the direction of the line along the

length of the prismatic element.

Figure 7. Finite element mesh for a yarn
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Fileyarn.dat lists the finite element mesh information for all the yams. The data is given as
the node number and the corresponding nodal coordinates; and then the element number and the

connectivity for the element. The information is repeated for all the yams in serial order. The

information is self-explanatory (since the data is printed out with appropriate headers), and hence

is not explained in this manual. The user may transfer the data to a suitable graphics software

package for visualizing the finite element mesh of the yams.

Caution: The yam finite element mesh should not be confused with the finite element mesh of the

unit-cell. The only purpose for generating the yam mesh is to determine the material property code
at a given point (X,Y,Z).

4.2 ItTEz-20 Output

The output files forltTEz-20 are sam.out and yarn.dat (see Appendix A.3). The format of

sam.out is similar to that of textile.out; and yarn.dat is identical to that explained in section 4.1.3.

Since the algorithm used to implementfl TE%-20 is based on an approximate analysis, the resulting

stiffness matrix will not be symmetric. For the continuum problem (when 'solid' option is used),

the effective elastic constants are obtained from the stiffness matrix using the following two

methods. In the first method the stiffness matrix is symmetrized, inverted to give the compliance

matrix from which the elastic constants are predicted. In the second method, the (unsymmetric)

stiffness matrix is inverted and the resulting compliance matrix is symmetrized. The results from

both methods are printed in sam.out.
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Appendix

A.1 Computation of Inhomogenous Element Stiffness

The element stiffness matrix (K e) in/uTEz-IO is formulated as:

K e = [ BrCB dV e

Jve
+1 +1 +1

-1 -1 -1

(8)

N N N

= 22Z
i=lj=lk=l

W_WyWk BTc(_,t],_) BIJ_

where Ve is the domain of the element, B is the strain--displacement transformation matrix, C is the

elasticity matrix, Nis the number of Gauss points used for integration, Wis the Gaussian integration

weight factor and IJI is the determinant of the Jacobian. The material property at each Gauss point

(_,r/,_) is determined, and the corresponding elasticity matrix is used to perform the volume

integration. The element stiffness matrix thus represents the averaged properties of the constituent
materials in that element.
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A.2 File Flow Chart for IzTEz-IO

INPUT

O

TEz-IO
(mlcrotech l O)

'stress' or 'strain' option 'tstress' or 'tstrain' option

t_,...,stress6.dat ,

__,...,stra°r6.dat, ts_
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A.3 File Flow Chart for I_TEx,-20

INPUT

kt TE z - 2 0
(microtech20)

OUTP
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A.4 Stiffness Parameters in paramlO.var

Required value for the global stiffness parameter NSTIFF in file paramlO.var. NX, NY and NZ

denote the number of elements chosen to discretize the unit-cell in the three directions.

NX NY NZ NSTIFF

SOLID PLATE

8 8 8 549051 373371

8 8 9 631587 419043

8 8 i0 714123 464715

8 8 ii 796659 510387

8 8 12 879195 556059

8 9 8 686883 463512

8 9 9 790320 520293

8 9 i0 893757 577074

8 9 ii 997194 633855

8 9 12 1100631 690636

8 i0 8 839691 562869

8 I0 9 966333 631911

8 i0 i0 1092975 700953

8 i0 ii 1219617 769995

8 i0 12 1346259 839037

8 ii 8 1007475 671442

8 ii 9 1159626 753897

8 ii i0 1311777 836352

8 ii ii 1463928 918807

8 ii 12 1616079 1001262

8 12 8 1190235 789231

8 12 9 1370199 886251

8 12 i0 1550163 983271

8 12 ii 1730127 1080291

8 12 12 1910091 1177311

9 8 8 693714 471234

9 8 9 798015 528879

9 8 i0 902316 586524

9 8 Ii 1006617 644169

9 8 12 1110918 701814

9 9 8 867999 585147

9 9 9 998733 656832

9 9 i0 1129467 728517

9 9 ii 1260201 800202

9 9 12 1390935 871887

9 i0 8 1061238 710724
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NX NY NZ NSTIFF

SOLID PLATE

9

9

9

9

9

9

9

9

9

9

9

9

9

9

i0

i0

i0

i0

I0

I0

i0

i0

i0

i0

i0

i0

i0

i0

i0

i0

i0

i0

i0

i0

i0

I0

i0

I0

i0

ii

ii

i0

i0

i0

I0

ii

ii

ii

ii

Ii

12

12

12

12

12

8

8

8

8

8

9

9

9

9

9

i0

i0

i0

i0

i0

ii

ii

ii

ii

ii

12

12

12

12

12

8

8

9 1221321 797907

i0 1381404 885090

ii 1541487 972273

12 1701570 1059456

8 1273431 847965

9 1465779 952104

i0 1658127 1056243

ii 1850475 1160382

12 2042823 1264521

8 1504578 996870

9 1732107 1119423

i0 1959636 1241976

ii 2187165 1364529

12 2414694 1487082

8 855225 580419

9 983829 651423

i0 1112433 722427

Ii 1241037 793431

12 1369641 864435

8 1070229 720876

9 1231446 809193

i0 1392663 897510

ii 1553880 985827

12 1715097 1074144

8 1308633 875733

9 1506063 983163

i0 1703493 1090593

ii 1900923 1198023

12 2098353 1305453

8 1570437 1044990

9 1807680 1173333

i0 2044923 1301676

ii 2282166 1430019

12 2519409 1558362

8 1855641 1228647

9 2136297 1379703

I0 2416953 1530759

ii 2697609 1681815

12 2978265 1832871

8 1033584 700926

9 1189029 786675
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NX NY NZ

ii

ii

Ii

ii

Ii

ii

Ii

ii

ii

ii

ii

ii

Ii

Ii

ii

ii

ii

ii

ii

Ii

Ii

ii

ii

12

12

12

12

12

12

12

12

12

12

12

12

12

12

12

12

12

12

NSTIFF

SOLID PLATE

8 i0 1344474

8 ii 1499919

8 12 1655364

9 8 1293573

9 9 1488459

9 i0 1683345

9 ii 1878231

9 12 2073117

i0 8 1581876

i0 9 1820559

i0 i0 2059242

i0 ii 2297925

i0 12 2536608

ii 8 1898493

ii 9 2185329

ii i0 2472165

ii ii 2759001

ii 12 3045837

12 8 2243424

12 9 2582769

12 i0 2922114

12 ii 3261459

12 12 3600804

8 8 1228791

8 9 1413615

8 I0 1598439

8 ii 1783263

8 12 1968087

9 8 1538031

9 9 1769772

9 I0 2001513

9 ii 2233254

9 12 2464995

i0 8 1880967

i0 9 2164809

i0 i0 2448651

i0 ii 2732493

i0 12 3016335

Ii 8 2257599

ii 9 2598726

ii i0 2939853

872424

958173

1043922

870699

977376

1084053

1190730

1297407

1057896

1187679

1317462

1447245

1577028

1262517

1417584

1572651

1727718

1882785

1484562

1667091

1849620

2032149

2214678

832755

934635

1036515

1138395

1240275

1034616

1161381

1288146

1414911

1541676

1257213

1411455

1565697

1719939

1874181

1500546

1684857

1869168
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NX NY NZ NSTIFF

SOLID PLATE

12

12

12

12

12

12

12

ii

ii

12

12

12

12

12

ii 3280980 2053479

12 3622107 2237790

8 2667927 1764615

9 3071523 1981587

i0 3475119 2198559

ii 3878715 2415531

12 4282311 2632503
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